Буферные растворы (буферные смеси, буферы). Буферные системы, их классификация и механизм действия

Одним из основных свойств живых организмов является поддержание кислотно-основного гомеостаза на определенном уровне. Протолитический гомеостаз – постоянство рН биологических жидкостей, тканей и органов. Это находит выражение в достаточно постоянных значениях рН биологических сред (крови, слюны, желудочного сока и т.д.) и способности организма восстанавливать нормальные значения рН при воздействии протолитов. Система, поддерживающая протолитический гомеостаз, включает в себя не только физиологические механизмы (легочную и почечную компенсацию), но и физико-химические: буферное действие, ионный обмен и диффузию.

Буферными растворами называются растворы, сохраняющие неизменными значения рН при разбавлении или добавлении небольшого количества сильной кислоты или основания. Протолитические буферные растворы представляют смеси электролитов, содержащие одноимённые ионы.

Различают в основном протолитические буферные растворы двух типов:

    Кислотные т.е. состоящие из слабой кислоты и избытка сопряженного с ней основания (соли, образованной сильным основанием и анионом этой кислоты). Например: СН 3 СООН и СН 3 СООNa - ацетатный буфер

СН 3 СООН + Н 2 О ↔ Н 3 О + + СН 3 СОО - избыток сопряженного

основания

СН 3 СООNa → Na + + CH 3 COO -

    Основные, т.е. состоящие из слабого основания и избытка сопряженной с ним кислоты (т.е. соли, образованной сильной кислотой и катионом этого основания). Например: NH 4 OH и NH 4 Cl – аммиачный буфер.

NH 3 + H 2 O ↔ OH - + NH 4 + избыток

Основание

сопряженной

NH 4 Cl → Cl - + NH 4 + кислоты

Уравнение буферной системы рассчитывается по формуле Гендерсона-Гассельбаха:

рН = рК + ℓg , pOH = pK + ℓg
,

где рК = -ℓg К Д.

С – молярная или эквивалентная концентрация электролита (C = V N)

Механизм действия буферных растворов

Рассмотрим его на примере ацетатного буфера: СН 3 СООН + СН 3 СООNa

Высокая концентрация ацетат-ионов обусловлена полной диссоциацией сильного электролита – ацетата натрия, а уксусная кислота в присутствии одноименного аниона существует в растворе практически в неионизированном виде.

    При добавлении небольшого количества хлороводородной кислоты, ионы Н + связываются с имеющимся в растворе сопряженным основанием СН 3 СОО - в слабый электролит СН 3 СООН.

CH 3 COO ‾ +H + ↔ CH 3 COOH (1)

Из уравнения (1) видно, что сильная кислота НС1 заменяется эквивалентным количеством слабой кислоты СН 3 СООН. Количество СН 3 СООН увеличивается и по закону разбавления В. Оствальда степень диссоциации уменьшается. В результате этого концентрация ионов Н + в буфере увеличивается, но очень незначительно. рН сохраняется постоянным.

При добавлении кислоты к буферу рН определяется по формуле:

рН = рК + ℓg

    При добавлении к буферу небольшого количества щелочи протекает реакция её с СН 3 СООН. Молекулы уксусной кислоты будут реагировать с гидроксид-ионами с образованием Н 2 О и СН 3 СОО ‾:

CH 3 COOН + OH ‾ ↔ CH 3 COO ‾ + H 2 O (2)

В результате этого щелочь заменяется эквивалентным количеством слабоосновной соли CH 3 COONa. Количество СН 3 СООН убывает и по закону разбавления В. Оствальда степень диссоциации увеличивается за счет потенциальной кислотности оставшихся недиссоциированных молекул СН 3 СООН. Следовательно, концентрация ионов Н + практически не изменяется. рН остаётся постоянным.

При добавлении щелочи рН определяется по формуле:

рН = рК + ℓg

    При разбавлении буфера рН также не меняется, т.к. константа диссоциации и соотношение компонентов при этом остаются неизменными.

Таким образом, рН буфера зависит от: константы диссоциации и соотношения концентрации компонентов. Чем эти величины больше, тем больше рН буфера. рН буфера будет наибольшим при соотношении компонентов равным единице.

Для количественной характеристики буфера вводится понятие буферной ёмкости.

Классифицируйте её по составу и природе компонентов.

Укажите интервал значений рН, внутри которого эта система обладает буферной емкостью.

Напишите уравнения реакций, отражающих механизм её действия (ионная форма).

Объясните , почему аммиачная буферная система не входит в состав крови

1.Состав и природа компонентов:

А)NН 4 ОН (NН 3 х Н 2 О)-гидроксид аммония, слабый электролит

Б) NН 4 С1 – соль, хлорид аммония, сильный электролит.

Гидроксид аммония - слабый электролит, в растворе частично диссоциирует на ионы:

NН 4 ОН <=> NН 4 + + ОН-

При добавлении к раствору гидроксида аммония хлорида аммония, соль как сильный электролит практически полностью диссоциирует на ионы:

NН 4 С1 > NН 4 + + С1-

и подавляет диссоциацию основания, равновесие которого смещается в сторону обратной реакции.

  1. Интервал значений рН, внутри которого рассматриваемая система обладает буферной емкостью,рассчитывается по формуле:

гдеКв – константа диссоциации NН 4 ОН=1,8*10 -5 , С 0 -концентрация основания, Сс-концентрация соли.

рН=14-4,74+lg(C 0 /Cc)=9,26+lg(C 0 /Cc). В зависимости от соотношения C 0 /Cc интервал значений рН составляет 8,26-10,26.

  1. Способность аммиачного буфера поддерживать практически постоянное значение рН раствора основана на том, что входящие в них компоненты связывают ионы Н+ и ОН-, вводимые в раствор или образующиеся в результате реакции, протекающей в этом растворе. При добавлении к аммиачной буферной смеси сильной кислоты, ионы Н+ будут связываться молекулами или гидроксида аммония, а не увеличивать концентрацию ионов Н+ и уменьшать рН раствора:

NH 4 OH+H + =NH 4 + +H 2 O

При добавлении щелочи ионы ОН - будут связывать ионы NН 4 + , образуя при этом малодиссоциированное соединение, а не увеличивать рН раствора:

NH 4 + +ОН - = NH 4 OH

  1. Аммиачная буферная система не входит в ТОР РТсостав крови, поскольку интервал значений рН, внутри которого она будет обладать буферной емкостью, находится в щелочной области (рН больше 8). Нормальное значение рН плазмы крови составляет 7,40 ± 0,05, т.е ниже области буферирования.

1. 3) Напишите схему реакции взаимодействия этаналя с метиламином.

Опишите механизм этой реакции.

Обоснуйте роль кислотного катализатора.

Объясните возможность протекания реакции гидролиза полученного имина в кислой и щелочной среде.

2.Механизм этой реакции –нуклеофильное присоединение с последующим отщеплением молекулы воды

3. Роль кислотного катализатора – протонирование на стадии а)

4. В присутствии разбавленных кислот иминыгидролизуются водой с образованием карбонильных соединений и аминов, эта реакция обратна реакции синтеза иминов:

В присутствии щелочи гидролиз не идет

Билет 4.

Термодинамическая система(ТМ) - это любой реальный объект, выделяемый из окружающей среды с целью изучения процессов обмена в-вом и энергией между составляющими его частями, а так же между ним и окружающей средой с помощью термодинамических методов

Классификация термодинамических систем

3. Открытые обмениваются с ОС как веществом, так и энергией(организм, открытый сосуд с кипящей водой)

4. Закрытый –обменивается с ОС только энергией в форме теплоты или работы (газ в закрытом балоне)

5. Изолированные - не обмениваются ни в-вом, ни энергии. В природа абсолютно изолированных нет.

По наличию поверхности раздела внутри ТС

1.Гомогенные – поверхность раздела отсутствует, все компоненты находятся водой фазе, все физические и химическиесв-ва в любой части объема одинаковы (смесь газов)

2. Гетерогенные -содержится поверхность раздела, отделяющие части системы(фазы) различны по св-вам (кровь)

Параметры –величины, определяющие состояния ТС

По возможности непосредственного измерения

Основные параметры-параметры, которые можно измерить с помощью соотв-х приборов (m, V, C,плотность, объем)

Функции состояния - внутренняя энергия E(U);энтальпия (H); энтропия (S); энергия Гиббса (G); свободная энергия или энергия Гельмгольца

Можно определить изменение значений функции состояния

∆X(X 2 -X 1), ГДЕ Х-U,H,S,G,H

Термодинамическое состояние -совокупность значений некоторого числа физ. величин, характеризующих все физ и хм св-ва системы

Виды состояний:

Неравновесное- параметры меняются самопроизвольно(стакан с горячей водой)

Равновесное-параметры не меняются без внешних воздействий

Стационарное=постоянство параметров за счет внешних параметров (присуще жив организмам)

Процесс -переход системы из одного состояния я в другое, сопровождается изменениями термодинамических параметров.

Классификация-

по постоянству параметров:

А)изохорные(v=const)

B)Изобарные (давление- const)

C)изотермические(температура =const)

По знаку тепловому эффекта: экзотермические и эндотермические

По затрате Энергии : самопроизвольные, несамопроизвольные

По хар-ку протекания: -обратимые – протекают в прямом и обратном направлениях через одни и те же стадии, без изменений в окруж. среде.

Необратимые – все процессы не могут протекать в прямом и обратном направлениях через 1 и те же стадии.

Глава 6. ПРОТОЛИТИЧЕСКИЕ БУФЕРНЫЕ СИСТЕМЫ

Глава 6. ПРОТОЛИТИЧЕСКИЕ БУФЕРНЫЕ СИСТЕМЫ

Изменение любого фактора, могущего влиять на состояние химического равновесия системы веществ, вызывает в ней реакцию, стремящуюся противодействовать производимому изменению.

А. Ле Шателье

6.1. БУФЕРНЫЕ СИСТЕМЫ. ОПРЕДЕЛЕНИЕ И ОБЩИЕ ПОЛОЖЕНИЯ ТЕОРИИ БУФЕРНЫХ СИСТЕМ. КЛАССИФИКАЦИЯ БУФЕРНЫХ СИСТЕМ

Системы, поддерживающие протолитический гомеостаз, включают в себя не только физиологические механизмы (легочная и почечная компенсация), но и физико-химическое буферное действие, ионный обмен, диффузию. Поддержание на заданном уровне кислотно-основного равновесия обеспечивается на молекулярном уровне действием буферных систем.

Протолитическими буферными системами называются растворы, сохраняющие постоянное значение pH как при добавлении кислот и щелочей, так и при разведении.

Способность некоторых растворов сохранять неизменной концентрацию ионов водорода получила название буферного действия, которое является основным механизмом протолитического гомеостаза. Буферные растворы - это смеси слабого основания или слабой кислоты и их соли. В буферных растворах главными «действующими» компонентами являются донор и акцептор протонов, согласно теории Брёнстеда, или донор и акцептор электронной пары, согласно теории Льюиса, представляющие собой кислотно-основную пару.

По принадлежности слабого электролита буферной системы к классу кислот или оснований и по типу заряженной частицы они делятся на три типа: кислотный, основной и амфолитный. Раствор, содержащий одну или несколько буферных систем, называется буферным раствором. Буферные растворы можно приготовить двумя способами:

Частичной нейтрализацией слабого электролита сильным электролитом:

Смешиванием растворов слабых электролитов с их солями (или двух солей): CH 3 COOH и CH 3 COONa; NH 3 и NH 4 Cl; NaH 2 PO 4

и Na 2 HPO 4 .

Причина возникновения в растворах нового качества - буферного действия - заключается в совмещении нескольких протолитических равновесий:

Сопряженные кислотно-основные пары B/BH + и A - /HA называют буферными системами.

В соответствии с принципом Ле Шателье добавление в раствор слабой кислоты HB + H 2 O ↔ H 3 O + + B - сильной кислоты или соли, содержащей анионы B - , происходит процесс ионизации, смещающий равновесие влево (эффект общего иона) B - + H 2 O ↔ HB + OH - , а добавление щелочи (OH -) - вправо, так как вследствие реакции нейтрализации уменьшится концентрация ионов гидроксония.

При совмещении двух изолированных равновесий (ионизации кислоты и гидролиза по аниону) оказывается, что процессы, которые в них будут протекать при воздействии одних и тех же внешних факторов (добавлении ионов гидроксония и гидроксид-ионов), разнонаправле-ны. Кроме того, концентрация одного из продуктов каждой из совмещенных реакций влияет на положение равновесия другой реакции.

Протолитическая буферная система представляет собой совмещенное равновесие процессов ионизации и гидролиза.

Уравнение буферной системы выражает зависимость pH буферного раствора от состава буферной системы:

Анализ уравнения показывает, что величина pH буферного раствора зависит от природы веществ, образующих буферную систему, соотношения концентрации компонентов и температуры (так как от нее зависит величина pKa).

Согласно протолитической теории, кислоты, основания и амфоли-ты являются протолитами.

6.2. ТИПЫ БУФЕРНЫХ СИСТЕМ

Буферные системы кислотного типа

Кислотные буферные системы представляют собой смесь слабой кислоты HB (донор протона) и ее соли B - (акцептор протона). Они, как правило, имеют кислую среду (pH <7).

Гидрокарбонатная буферная система (зона буферного действия pH 5,4-7,4) - смесь слабой угольной кислоты H 2 CO 3 (донор протона) и ее соли HCO 3 - (акцептор протона).

Гидрофосфатная буферная система (зона буферного действия pH 6,2-8,2) - смесь слабой кислоты H 2 PO 4 - (донор протона) и ее соли HPO 4 2- (акцептор протона).

Гемоглобиновая буферная система представлена двумя слабыми кислотами (доноры протонов) - гемоглобином HHb и оксигемоглоби-ном HHbO 2 и сопряженными им слабыми основаниями (акцепторами протонов) - соответственно гемоглобинат - Hb - и оксигемоглобинат-анионами HbO 2 - .

Буферные системы основного типа

Основные буферные системы представляют собой смесь слабого основания (акцептор протона) и его соли (донор протона). Они, как правило, имеют щелочную среду (pH >7).

Аммиачная буферная система: смесь слабого основания NH 3 H 2 O (акцептор протона) и его соли - сильного электролита NH 4 + (донор протона). Зона буферного действия при pH 8,2-10,2.

Буферные системы амфолитного типа

Амфолитные буферные системы состоят из смеси двух солей или из соли слабой кислоты и слабого основания, например CH 3 COONH 4 , в котором CH 3 COO - проявляет слабые основные свойства - акцептор протона, а NH 4 + - слабая кислота - донор протона. Биологически значимой буферной системой амфолитного типа является белковая буферная система - (NH 3 +) m -Prot-(CH 3 COO -) n .

Буферные системы можно рассматривать как смесь слабого и силъ-ного электролитов, имеющих одноименные ионы (эффект общего иона). Например, в ацетатном буферном растворе - ацетат-ионы, а в гидрокарбонатном - карбонат-ионы.

6.3. МЕХАНИЗМ ДЕЙСТВИЯ БУФЕРНЫХ РАСТВОРОВ И ОПРЕДЕЛЕНИЕ PH В ЭТИХ РАСТВОРАХ. УРАВНЕНИЕ ГЕНДЕРСОНА-ХАССЕЛЬБАХА

Механизм действия буферных растворов кислотного типа рассмотрим на примере ацетатной буферной системы CH 3 COO - /CH 3 COOH, в основе действия которой лежит кислотно-основное равновесие CH 3 COOH ↔ H + + CH 3 COO - (K И = 1,75 10 -5). Главный источник ацетат-ионов - сильный электролит CH 3 COONa. При добавлении сильной кислоты сопряженное основание CH 3 COO - связывает добавленные катионы водорода, превращаясь в слабую кислоту: CH 3 COO - + + H + ↔ CH 3 COOH (кислотно-основное равновесие смещается влево). Уменьшение концентрации CH 3 COO - уравновешивается повышением концентрации слабой кислоты и указывает на процесс гидролиза. Согласно закону разведения Оствальда, увеличение концентрации кислоты несколько понижает ее степень электролитической диссоциации и кислота практически не ионизирует. Следовательно, в системе: С к увеличивается, С с и α уменьшается, - const, С к /С с увеличивается, где C к - концентрация кислоты, С с - концентрация соли, α - степень электролитической диссоциации.

При добавлении щелочи катионы водорода уксусной кислоты высвобождаются и нейтрализуются добавленными ионами OH - , связываясь в молекулы воды: CH 3 COOH + OH - → CH 3 COO - + H 2 O

(кислотно-основное равновесие смещается вправо). Следовательно, С к увеличивается, С с и α уменьшается, - const, С к /С с уменьшается.

Механизм действия буферных систем основного и амфолитного типов аналогичен. Буферное действие раствора обусловлено смещением кислотно-основного равновесия за счет связывания добавляемых Н + и ОН - ионов компонентами буфера и образования малодиссоции-рующих веществ.

Механизм действия белкового буферного раствора при добавлении кислоты: (NH 3 +) m -Prot-(COO -) n + n H + (NH 3 +) m -Prot-(COOH) n , при добавлении щелочи - (NH 3 +) m -Prot-(COO -) n + m OH - (NH 2) m - Prot-(COO -) n + mH 2 O.

При больших концентрациях Н + и ОН - (больше 0,1 моль/л) значительно изменяется соотношение компонентов буферной смеси - С к /С с увеличивается или уменьшается и pH может измениться. Подтверждением этого является уравнение Гендерсона-Хассельбаха, которое устанавливает зависимость [Н + ], К И, α и С к /С с. Уравнение

выводим на примере буферной системы кислотного типа - смеси уксусной кислоты и ее соли СН 3 СОONа. Концентрация ионов водорода в буферном растворе определяется константой ионизации уксусной кислоты:


Уравнение показывает, что концентрация ионов водорода находится в прямой зависимости от К И, α, концентрации кислоты С к и в обратной зависимости от С с и соотношения С к /С с. Логарифмируя обе части уравнения и взяв логарифм со знаком минус, получим уравнение в логарифмической форме:

Уравнение Гендерсона-Хассельбаха для буферных систем основного и амфолитного типов выводится на примере вывода уравнения для буферных систем кислотного типа.

Для буферной системы основного типа, например аммиачной, концентрацию катионов водорода в растворе можно рассчитать, исходя из константы кислотно-основного равновесия сопряженной кислоты

NH4 + :

Уравнение Гендерсона-Хассельбаха для буферных систем основного типа:

Данное уравнение можно представить в виде:

Для фосфатной буферной системы HPO 4 2- /H 2 PO 4 - pH можно рассчитать по уравнению:

где pK 2 - константа диссоциации ортофосфорной кислоты по второй ступени.

6.4. ЕМКОСТЬ БУФЕРНЫХ РАСТВОРОВ И ОПРЕДЕЛЯЮЩИЕ ЕЕ ФАКТОРЫ

Способность растворов поддерживать постоянное значение pH небезгранична. Буферные смеси можно различить по силе оказываемого ими сопротивления по отношению к действию кислот и оснований, вводимых в буферный раствор.

Количество кислоты или щелочи, которое нужно добавить к 1 л буферного раствора, чтобы значение его pH изменилось на единицу, называют буферной емкостью.

Таким образом, буферная емкость является количественной мерой буферного действия раствора. Буферный раствор имеет максимальную буферную емкость при pH = pK кислоты или основания, образующей смесь при соотношении ее компонентов, равном единице. Чем выше исходная концентрация буферной смеси, тем выше ее буферная емкость. Буферная емкость зависит от состава буферного раствора, концентрации и соотношения компонентов.

Нужно уметь правильно выбрать буферную систему. Выбор определяется необходимым интервалом pH. Зона буферного действия определяется силовым показателем кислоты (основания) ±1 ед.

При выборе буферной смеси необходимо учитывать химическую природу ее компонентов, так как вещества раствора, к которым добав-

ляется буферная система, могут образовывать нерастворимые соединения, взаимодействовать с компонентами буферной системы.

6.5. БУФЕРНЫЕ СИСТЕМЫ КРОВИ

Кровь содержит 4 основные буферные системы.

1.Гидрокарбонатная. На ее долю приходится 50% емкости. Она работает главным образом в плазме и играет центральную роль в транспорте СО 2 .

2.Белковая. На ее долю приходится 7% емкости.

3.Гемоглобиновая, на нее приходится 35% емкости. Она представлена гемоглобином и оксигемоглобином.

4.Гидрофосфатная буферная система - 5% емкости. Гидрокарбонатная и гемоглобиновая буферные системы выполняют

центральную и чрезвычайно важную роль в транспорте СО 2 и установлении pH. В плазме крови pH 7,4. СО 2 - продукт клеточного метаболизма, выделяющийся в кровь. Диффундирует через мембрану в эритроциты, где реагирует с водой с образованием Н 2 СО 3 . Соотношение устанавливается равным 7, и pH будет 7,25. Кислотность повышается, при этом имеют место реакции:

Образующийся НСО 3 - выходит через мембрану и уносится током крови. В плазме крови при этом pH 7,4. Когда венозная кровь вновь попадает в легкие, гемоглобин реагирует с кислородом с образованием оксигемоглобина, который является более сильной кислотой: ННb + + O 2 ↔ НHbО 2 . pH понижается, так как образуется более сильная кислота, происходит реакция: НHbО 2 + НСО 3 - ↔ HbO 2 - + Н 2 СO 3 . Затем СО 2 выделяется в атмосферу. Таков один из механизмов транспорта СО 2 и О 2 .

Гидратация и дегидратация СО 2 катализируется ферментом карбо-ангидразой, которая имеется в эритроцитах.

Основания также связываются буферным раствором крови и выделяются с мочой, главным образом в виде одно- и двузамещенных фосфатов.

В клиниках всегда определяют резервную щелочность крови.

6.6. ВОПРОСЫ И УПРАЖНЕНИЯ ДЛЯ САМОПРОВЕРКИ ПОДГОТОВЛЕННОСТИ К ЗАНЯТИЯМ И ЭКЗАМЕНАМ

1.При совмещении каких протолитических равновесий растворы будут обладать буферными свойствами?

2.Дать понятие о буферных системах и буферном действии. Каков химизм буферного действия?

3.Основные типы буферных растворов. Механизм их буферного действия и уравнение Гендерсона-Хассельбаха, определяющее pH в буферных системах.

4.Основные буферные системы организма и их взаимосвязь. От чего зависит pH буферных систем?

5.Что называют буферной емкостью буферной системы? Какая из буферных систем крови обладает наибольшей емкостью?

6.Способы получения буферных растворов.

7.Выбор буферных растворов для медико-биологических исследований.

8.Определить, ацидоз или алкалоз наблюдается у больного, если концентрация ионов водорода в крови равна 1,2.10 -7 моль/л?

6.7. ТЕСТОВЫЕ ЗАДАНИЯ

1. Какая из предложенных систем является буферной?

а)HCl и NaCl;

б)H 2 SO 4 и NaHSO 4 ;

в)H 2 CO 3 и NaHCO 3 ;

г)HNO 3 и NaNO 3 ;

д)HClO 4 и NaClO 4 .

2. Для какой из предложенных буферных систем соответствует расчетная формула pH = рК?

а)0,1 М р-р NaH 2 PO 4 и 0,1 М р-р Na 2 HPO 4 ;

б)0,2 М р-р H 2 CO 3 и 0,3 М р-р NaHCO 3 ;

в)0,4 М р-р NH 4 OH и 0,3 М р-р NH 4 Cl;

г)0,5 М р-р СН 3 СООН и 0,8 М р-р CH 3 COONa;

д)0,4 М р-р NaHCO 3 и 0,2 М р-р Н 2 CO 3 .

3. Какая из предложенных буферных систем является бикарбонатной буферной системой?

а) NH 4 OH и NH 4 Cl;

б)Н 2 СО 3 и КНСО 3 ;

в)NaH 2 PO 4 и Na 2 HPO 4 ;

г)СН 3 СOOН и СН 3 СООК;

д)K 2 HPO 4 и КН 2 РО 4 .

4. При каких условиях pH буферной системы равна рК к?

а)когда равны концентрация кислоты и ее соли;

б)когда не равны концентрация кислоты и ее соли;

в)когда соотношение объемов кислоты и ее соли равно 0,5;

г)когда соотношение объемов кислоты и ее соли при одинаковых концентрациях не равно;

д)когда концентрация кислоты больше концентрации соли в 2 раза.

5. Какая из предложенных формул подойдет для расчета [Н+], для системы СН 3 СООН и СН 3 СOOК?

6. Какая из ниже перечисленных смесей входит в состав буферной системы организма?

а)HCl и NaCl;

б)H 2 S и NaHS;

в)NH 4 OH и NH 4 Cl;

г)H 2 CO 3 и NaНСО 3 ;

д)Ba(OH) 2 и BaOHCl.

7. К какому типу кислотно-основных буферных систем относится белковый буфер?

а)слабая кислота и ее анион;

в)анионы 2 кислых солей;

д)ионы и молекулы амфолитов.

8. К какому типу кислотно-основных буферных систем относится аммиачный буфер?

а)слабая кислота и ее анион;

б)анионы кислой и средней соли;

в)анионы 2 кислых солей;

г)слабое основание и его катион;

д)ионы и молекулы амфолитов.

9. К какому типу кислотно-основных буферных систем относится фосфатный буфер?

а)слабая кислота и ее анион;

б)анионы кислой и средней соли;

в)анионы 2 кислых солей;

г)слабое основание и его катион;

д)ионы и молекулы амфолитов.

10. Когда белковая буферная система не является буфером?

а)в изоэлектрической точке;

б)при добавлении щелочи;

в)при добавлении кислоты;

г)в нейтральной среде.

11. Какая из предложенных формул подойдет для расчета [ОН - ] системы: NH 4 OH и NH 4 Cl?

Общая химия: учебник / А. В. Жолнин; под ред. В. А. Попкова, А. В. Жолнина. - 2012. - 400 с.: ил.

Механизм буферного действия (на примере аммиачного буфера)

Механизм действия буферной системы рассмотрим на примере аммиачной буферной системы: NН 4 ОН (NН 3 х Н 2 О) + NН 4 С1.

Гидроксид аммония - слабый электролит, в растворе частично диссоциирует на ионы:

NН 4 ОН <=> NН 4 + + ОН -

При добавлении к раствору гидроксида аммония хлорида аммония, соль как сильный электролит практически полностью диссоциирует на ионы NН 4 С1 > NН 4 + + С1 - и подавляет диссоциацию основания, равновесие которого смещается в сторону обратной реакции. Поэтому С (NН 4 ОН) ? С (основания); а С (NН 4 +) ? С (соли).

Если в буферном растворе С (NН 4 ОН) = С (NН 4 С1), то рН = 14 - рКосн. = 14 + lg 1,8.10-5 = 9,25.

Способность буферных смесей поддерживать практически постоянное значение рН раствора основана на том, что входящие в них компоненты связывают ионы Н+ и ОН-, вводимые в раствор или образующиеся в результате реакции, протекающей в этом растворе. При добавлении к аммиачной буферной смеси сильной кислоты, ионы Н+ будут связываться молекулами аммиака или гидроксида аммония, а не увеличивать концентрацию ионов Н+ и уменьшать рН раствора.

При добавлении щелочи ионы ОН - будут связывать ионы NН 4 +, образуя при этом малодиссоциированное соединение, а не увеличивать рН раствора.

Буферное действие прекращается, как только одна из составных частей буферного раствора (сопряженное основание или сопряженная кислота) полностью израсходуется.

Для количественной характеристики способности буферного раствора противостоять влиянию сильных кислот и оснований используется величина, называемая буферной емкостью. По мере увеличения концентрации буферного раствора возрастает его способность сопротивляться изменению рН при добавлении кислот или щелочей.

Свойство растворов сохранять значение рН в определенных пределах при добавлении небольших количеств кислоты или щелочи называется буферным действием. Растворы, обладающие буферным действием, называются буферными смесями.

Для случая титрования: щавелевая кислота и гидроксид калия, изобразите кривую титрования, укажите случай титрования, скачок титрования, точку эквивалентности, используемые индикаторы

Скачок титрования: pH = 4-10. Максимальная ошибка в% - меньше 0.4.

Индикаторы - тимолфталеин, фенолфталеин.

Восстановитель, какие элементы периодической системы элементов могут быть восстановителями и почему?

Восстановитель - это вещество, которое в ходе реакции отдает электроны, т.е. окисляется.

Восстановителями могут быть нейтральные атомы, отрицательно заряженные ионы неметаллов, положительно заряженные ионы металлов в низшей степени окисления, сложные ионы и молекулы, содержащие атомы в состоянии промежуточной степени окисления.

Нейтральные атомы. Типичными восстановителями являются атомы, на внешнем энергетическом уровне которых имеется от 1 до 3 электронов. К этой группе восстановителей относятся металлы, т.е. s-, d - и f-элементы. Восстановительные свойства проявляют и неметаллы, например водород и углерод. В химических реакциях они отдают электроны.

Сильными восстановителями являются атомы с малым потенциалом ионизации. К ним относятся атомы элементов двух первых главных подгрупп периодической системы элементов Д.И. Менделеева (щелочные и щелочноземельные металлы), а также Аl, Fe и др.

В главных подгруппах периодической системы восстановительная способность нейтральных атомов растет с увеличением радиуса атомов. Так, например, в ряду Li - Fr более слабым восстановителем будет Li, а сильным - Fr, который вообще является самым сильным восстановителем из всех элементов периодической системы.

Отрицательно заряженные ионы неметаллов. Отрицательно заряженные ионы образуются присоединением к нейтральному атому неметалла одного или несколько электронов:

Так, например, нейтральные атомы серы, йода, имеющие на внешних уровнях 6 и 7 электронов, могут присоединить соответственно 2 и 1 электрон и превратиться в отрицательно заряженные ионы.

Отрицательно заряженные ионы являются сильными восстановителями, так как они могут при соответствующих условиях отдавать не только слабо удерживаемые избыточные электроны, но и электроны со своего внешнего уровня. При этом, чем более активен неметалл как окислитель, тем слабее его восстановительная способность в состоянии отрицательного иона. И наоборот, чем менее активен неметалл как окислитель, тем активнее он в состоянии отрицательного иона как восстановитель.

Восстановительная способность отрицательно заряженных ионов при одинаковой величине заряда растет с увеличением радиуса атома. Поэтому, например, в группе галогенов ион йода обладает большей восстановительной способностью, чем ионы брома и хлора, a фтор - восстановительных свойств совсем не проявляет.

Положительно заряженные ионы металлов в низшей степени окисления. Ионы металлов в низшей степени окисления образуются из нейтральных атомов в результате отдачи только части электронов с внешней оболочки. Так, например, атомы олова, хрома, железа, меди и церия, вступая во взаимодействие с другими веществами, вначале могут отдать минимальное число электронов.

Ионы металлов в низшей степени окисления могут проявлять восстановительные свойства, если у них возможны состояния с более высокой степенью окисления.

В уравнении ОВР расставьте коэффициенты методом электронного баланса. Укажите окислитель и восстановитель.

K 2 Cr 2 O 7 + 6FeSO 4 + 7H 2 SO 4 = K 2 SO 4 + Cr 2 (SO 4) 3 + 3Fe 2 (SO 4) 3 + 7H 2 O

1 Cr 2 +6 +3е x 2 Cr 2 +3 окислитель

6 Fe +2 - 1е Fe +3 восстановитель

2KMnO 4 + 5H 2 S + 3H 2 SO 4 = K 2 SO 4 + 2MnSO4 + 5S + 8H 2 O

2 Mn +7 + 5е Mn +2 окислитель

5 S -2 - 2е S 0 восстановитель

Буферными системами (буферами) называют растворы, обла­дающие свойством достаточно, стойко, сохранять постоянство - кон­центрации водородных ионов как при добавлении кислот или щелочей, так и при разведении.

Буферные системы (смеси или растворы) по составу бывают двух основных типов :

а) из слабой кислоты и ее соли, образован­ной сильным основанием;

б) из слабого основания и его соли, образованной сильной кислотой.

На практике часто применяют следующие буферные смеси: ацетатный буфер CH 3 COOH + CH 3 COONa, бикарбонатный буфер H 2 CO 3 +NaHCO 3 , аммиачный буфер NH 4 OH +NH 4 Cl, белковый буфер белок кислота + белок соль, фосфатный буфер NaH 2 PO 4 + Na 2 HPO 4

Фосфатная буферная смесь состоит из двух солей, одна из ко­торых является однометаллической, а вторая - двухметаллической солью фосфорной кислоты.

Ацетатный буфер.

Рассмотрим механизм буферного действия . При добавлении соляной кислоты к ацетатному буферу проис­ходит взаимодействие с одним из компонентов смеси (СНзСООН); Из уравнения (а), сильная кислота заменяется эквивалентным количеством слабой кислоты (в данном случае НСl заменяется СН 3 СООН). В соответствии с законом разведения Оствальда повышение концентрации уксусной кислоты понижает степень ее диссоциации, а в результате этого концентрация ионов Н + в буфере увеличивается незначительно. При добавлении к буферному раствору щелочи концентрация водородных ионов и рН изменяется также незначительно. Щелочь при этом будет реагировать с другим компонентом буфера, (СН 3 СООН) по реакции нейтрализации. В результате этого добавленная щелочь заменяется эквивалентным количеством слабоосновной соли, в меньшей - степени влияющей на реакцию среды. Анионы СНзСОО~, образующиеся при диссоциации этой соли, будут оказывать некоторое Угнетающее действие на диссоциацию уксусной кислоты.

Буферные растворы в зависимости от своего состава делятся на 2 основных типа: кислотные и основные.

Приме­ром кислотного буфера может служить ацетатный буферный раствор, содержащий смесь уксусной кислоты и ацетата натрия (СНзСООН + СНзСООNа). При добавлении к такому раствору кисло­ты она взаимодействует с солью и вытесняет эквивалентное коли­чество слабой кислоты: СНзСООNа + НСl ó СН 3 СООН + NaСl. В растворе вместо сильной кислоты образуется слабая, и по­этому величина рН уменьшается незначительно. Если к этому буферному раствору добавить щелочь, она нейтра­лизуется слабой кислотой, и в растворе образуется эквивалентное количество соли: СНзСООН + NaОН ó СНзСООNа + Н 2 О. В результате рН почти не увеличивается. Для расчета рН в буферном растворе на примере ацетатного буфера рассмотрим процессы, в нем протекающие, и их влияние друг на друга. Ацетат натрия практически полностью диссоциирует на ионы, ацетат-ион подвергается гидролизу, как ион слабой кислоты: СНзСООNа -> Na + + СН 3 СОО~ СНзСОО - + НОН ó СНзСООН + ОН - . Уксусная кислота, также входящая в буфер, диссоциирует лишь в незначительной степени: СНзСООН ó СН 3 СОО+H -- Слабая диссоциация СНзСООН еще более подавляется в при-сутствии СНзСООNа, поэтому концентрацию недиссоциированной уксусной кислоты принимаем практически равной ее начальной концентрации:[СНзСООН] = с r . C другой стороны, гидролиз соли также подавлен наличием в растворе кислоты. Поэтому можно считать, что концентрация аце­тат-ионов в буферной смеси практически равна исходной концент­рации соли без учета концентрации ацетат-ионов, образующихся в результате диссоциации кислоты: [СНзСОО] = с с . Это уравнение называют уравнением буферного раствора (уравнением Гендерсона Гассельбаха ). Его анализ для буферного раствора, образованного слабой кислотой и ее солью, показывает, что концентрация водородных ионов в буферном растворе опреде­ляется константой диссоциации слабой кислоты и соотношением концентраций кислоты и соли. Уравнение Гендерсона-Хассельбаха для буферных систем основного типа:

31.Емкость буферных растворов и факторы, определяющие её. Буферные системы крови. Водородкарбонатный буфер. Фосфатный буфер.

Буферной емкостью (В) называется количество сильной кислоты или сильного основания, которое нужно прибавить к одному литру буферного раствора, чтобы изменить его рН на еди­ницу. Она выражается в моль/л или чаще в ммоль/л и опреде­ляется по формуле: В = (c V) / д pH Vб, где В - буферная емкость; с - концентрация сильной кислоты или основания (моль/л); V - объем добавленного сильного электролита (л); V б - объем буферного раствора (л); д рН - изменение рН.

Способность растворов поддерживать постоянное значение pH небезгранична. Буферные смеси можно различить по силе оказываемого ими сопротивления по отношению к действию кислот и оснований, вводимых в буферный раствор.

Количество кислоты или щелочи, которое нужно добавить к 1 л буферного раствора, чтобы значение его pH изменилось на единицу, называют буферной емкостью.

Таким образом, буферная емкость является количественной мерой буферного действия раствора. Буферный раствор имеет максимальную буферную емкость при pH = pK кислоты или основания, образующей смесь при соотношении ее компонентов, равном единице. Чем выше исходная концентрация буферной смеси, тем выше ее буферная емкость. Буферная емкость зависит от состава буферного раствора, концентрации и соотношения компонентов.

Нужно уметь правильно выбрать буферную систему. Выбор определяется необходимым интервалом pH. Зона буферного действия определяется силовым показателем кислоты (основания) ±1 ед.

При выборе буферной смеси необходимо учитывать химическую природу ее компонентов, так как вещества раствора, к которым добав-

ляется буферная система, могут образовывать нерастворимые соединения, взаимодействовать с компонентами буферной системы.

2024 kidspartyband.ru. Литература в школе.