4 комплемент его функция пути активации. Система комплемента, классический и альтернативный пути активации комплемента

/ 20
ХудшийЛучший

Комплементом называют сложную систему белков (более 20) сыворотки крови, обладающих ферментативной активностью. Основные 13 компонентов системы комплемента обозначаются буквой С с соответствующим номером (CI, С2, СЗ и т. д.) Они образуются в печени и секретируются макрофагами. Активация системы комплемента протекает классическим и альтернативным путями в виде цепной реакции, управляемой 7-ю регуляторными белками. При этом каждый предыдущий компонент каскада активирует несколько последующих за счет их ферментативного расщепления. Активированные компоненты обозначаются сверху чертой.

Естественный ингибитор комплемента С1 (С 1-ингибитор) тормозит спонтанную активацию Clq компонента.

Классический путь активации Запускается комплексом антиген-антитело в присутствии катионов Са и Mg обычно на поверхности клетки-мишени. Комплекс антиген-антитело связывается с C1q, который присоединяет C1rs, а затем активирует и расщепляет С4 на С4а и С4b. С4b присоединяется либо к С1, либо к поверхности клетки-мишени. Далее к нему присоединяется С2. Он, в свою очередь, расщепляется на С2а и С2b предыдущим компонентом. С2а остается связанным с С4b. Этот комплекс получил название конвертазы классического пути активации комплемента. Она расщепляет СЗ компонент на СЗа и СЗb. СЗb присоединяется к конвертазе классического пути и этот макромолекулярный комплекс активирует компонент С5. Он распадается на С5а и С5b. К С5b на мембране клетки-мишени последовательно присоединяются С6, С7, С8 и С9 компоненты. Комплекс С5b-С9 получил название мембраноатакующего комплекса (МАК). В механизме его литического действия много общего с перфорином. МАК встраивается в мембрану клетки-мишени за счет гидрофобных взаимодействий, образуя трансмембранный канал. Через него в клетку поступают ионы натрия и вода, а выходят ионы калия, что приводит к цитолизу.

Классический путь активации комплемента может запускаться белками А стафилококка, комплексами С-реактивного белка с микробными продуктами и др.

Альтернативный путь активации Комплемента является неспецифическим. Он запускается липополисахаридами клеточной стенки бактерий (эндотоксинами), агрегированными иммуноглобулинами, лекарственными препаратами и т. д. Образующийся при этом СЗb-компонент в присутствии ионов магния связывается с фактором В сыворотки (неактивная сериновая протеаза). На комплекс СЗbВ действует фактор D - активная сывороточная протеаза. Она расщепляет фактор В на Ва и Вb. Образующийся комплекс СЗbВb представляет собой конвертазу альтернативного пути активации. В норме она неустойчива, но стабилизируется белком пропердином (белок Р). Конвертаза альтернативного пути активирует С5 компонент. Дальнейшая активация комплемента не отличается от классического пути. Таким образом, СЗ-компонент является ведущим в активации комплемента по обоим путям, определяя процессы цитолиза. В процессе активации комплемента образуются биологически активные фрагменты. Так, компоненты СЗа и C5a являются анафилатоксинами, действуют на макрофаги, гранулоциты, тучные клетки. Возникающий патологический процесс клинически проявляется аллергическими и псевдоаллергическими реакциями.

При заболеваниях, сопровождающихся образованием иммунных комплексов (аутоиммунные болезни, инфекции), уровень белков комплемента снижается - гипокомплементемия. Уровень комплемента наиболее высок у морских свинок, поэтому их сыворотка крови используется как " комплемент" в серологических реакциях.

Компоненты активированного комплемента связываются с рецепторами комплемента, имеющимися на лейкоцитах: CR1(CD35) - рецептор 1-го типа, связывает СЗb, есть на эритроцитах и лейкоцитах, он же связывает вирус Эпштейна - Барра; CR2(CD21) связывает C3d, имеется на лимфоцитах; CR3(CD11b/CD18) связывает C3bi, экспрессирован на гранулоцитах, участвует в фагоцитозе; CR4 (CD11c/CD18) для СЗа присутствует на фагоцитах.

Взаимодействуя с этими рецепторами клеток продукты активации комплемента стимулируют функции лейкоцитов, запускают воспаление; усиливают противомикробный иммунитет.

Комплемент является одним из важных фак­торов гуморального иммунитета, играющим роль в защите организма от антигенов. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена.

1. Девять белков, составляющих собственно комплемент и обозначаемых поэто­му буквой С: С1...С9, причем С1-компонент состоит из трех белковых субъединиц (С1q, С1г, С1s), все остальные представляют собой единичные белковые молекулы. В составе молекулы имеется рецептор для связывания с Рс-фрагментом молеку­лы антитела. Антитела, относящиеся к иммуноглобулинам различных классов, вза­имодействуют с комплементами с различной степенью активности. Белки С5, С6, С7, С8 и С9 участвуют в организации мембрано-атакующего комплекса.

2. Регуляторные белки: С1Е1, С4bр, фактор Н, фактор I (инактиватор СЗb/С4b), белок S.

3. Факторы, участвующие в альтернативном пути активации системы комплемента: фактор В (протеиназа), фактор В (гликопротеин), фактор Р (пропердин) - у-глобулин, его обнаружил в 1954 г. Л. Пиллемер. Этот белок, образуя комплекс с эндоток­сином, в присутствии ионов Mg разрушает С3, поэтому был назван пропердином. Пропердин стабилизирует СЗ-конвертазу альтернативного пути.

Функции комплемента многообразны: а) участвует в лизисе микробных и других клеток (цитотоксическое действие); б) обладает хемотаксической активностью; в) принимает учас­тие в анафилаксии; г) участвует в фагоцитозе. Следовательно, комплемент является компонен­том многих иммунологических реакций, направ­ленных на освобождение организма от микробов и других чужеродных клеток и антигенов (на­пример, опухолевых клеток, трансплантата).

Механизм активации комплемента представляет собой каскад фер­ментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стен­ку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый.

По классическому пути комплемент активирует­ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и Сls. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4, С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента С3 активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется литический или мембраноатакующий комплекс который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.


Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути - образу­ется мембраноатакующий комплекс.

Лектиновыи путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов - субъединицы СЗа и СЗb, С5а и С5b и дру­гие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, СЗb - играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са 2+ и Mg 2+ .

1) способность связываться с комплексом антиген + антитело;

2) лизирование эритроцитов, использованных для получения гемолитической сыворотки.

РСК ставят в два этапа, и в ней соответственно участвуют две системы - опыт­ная, или диагностическая, и индикаторная. Диагностическая система состоит из исследуемой (или диагностической) сыворотки, которую перед постановкой реак­ции прогревают при 56 °С в течение 30 мин для инактивации имеющегося в ней комплемента, и антигена. К этой системе добавляют стандартный комплемент. Его источником служит свежая или высушенная сыворотка морской свинки. Смесь ин­кубируют при 37 "С в течение одного часа. Если в исследуемой сыворотке имеют­ся антитела, произойдет их взаимодействие с добавленным антигеном, и образую­щиеся комплексы антиген + антитело свяжут добавленный комплемент. Если же в сыворотке антитела отсутствуют, образования комплекса антиген + антитело не произойдет, и комплемент останется свободным. Никаких видимых проявлений связывания комплемента на этой стадии реакции обычно нет. Поэтому для выяс­нения вопроса, произошло или нет связывание комплемента, добавляют вторую, индикаторную систему (инактивированная гемолитическая сыворотка + эритроци­ты барана), и смесь всех компонентов РСК вновь инкубируют при 37С в течение 30-60 мин, после чего оценивают результаты реакции. В случае, если комплемент связался на первой стадии, в диагностической системе, т. е. в сыворотке больного имеются антитела, и произошло связывание комплемента комплексом антитело + + антиген, лизиса эритроцитов не будет - РСК положительна: жидкость бесцветна, на дне пробирки осадок эритроцитов. Если же в сыворотке специфические антите­ла отсутствуют и связывания комплемента в диагностической системе не произой­дет, т. е. РСК отрицательна, то неизрасходованный в диагностической системе Комплемент связывается с комплексом эритроциты + антитела индикаторной системы и произойдет гемолиз: в пробирке «лаковая кровь», осадка эритроцитов нет. Интенсивность РСК оценивают по четырехкрестной системе в зависимости от степени задержки гемолиза и наличия осадка эритроцитов. Реакция сопровожда­ется соответствующими контролями: контроль сыворотки (без антигена) и конт­роль антигена (без сыворотки), так как некоторые сыворотки и некоторые антигены обладают антикомплементарным действием. Перед постановкой РСК все компо­ненты, участвующие в ней, за исключением исследуемой сыворотки или антигена, подвергаются тщательному титрованию. Особенно важно ввести в реакцию точ­ную дозу комплемента, так как его нехватка или избыток могут привести к лож­ным результатам. Титром комплемента является то его минимальное количество, которое в присутствии рабочей дозы гемолитической сыворотки обеспечивает полное растворение эритроцитов. Для постановки основного опыта берут дозу комплемента, увеличенную на 20-25 % по сравнению с установленным титром. Титром гемолитической сыворотки является то ее максимальное разведение, кото­рое, будучи смешано с равным объемом 10 % раствора комплемента, полностью гемолизирует соответствующую дозу эритроцитов в течение 1 ч при температуре 37 °С. В основной опыт берут сыворотку, разведенную до 1/3 своего титра.

Приобретенный иммунитет. Значение антител в формировании иммунитета. Роль различных классов иммуноглобулинов в иммунологических реакциях (агглютинации, РСК, нейтрализации токсинов и вирусов, развитии местного иммунитет).

Приобретенный иммунитет отличается от видового следующими особенностями.

Во-первых, он не передается по наследству. По наследству передается лишь ин­формация об органе иммунитета, а сам иммунитет формируется в процессе индиви­дуальной жизни в результате взаимодействия с соответствующими возбудителями или их антигенами.

Во-вторых, приобретенный иммунитет является строго специфическим, т. е. все­гда направлен против конкретного возбудителя или антигена.

Форми­рование приобретенного специфического иммунитета происходит благодаря коопера­тивному взаимодействию макрофагов (и других антигенпредставляющих клеток), В- и Т-лимфоцитов и при активном участии всех остальных иммунных систем.

Одним из характерных признаков приобретенного иммунитета служит появление в сыворотке крови и тканевых соках специфических защитных веществ - антител, направленных против чужеродных веществ.

Антитела являются уникальными сывороточными белками - глобулинами, ко­торые вырабатываются в ответ на поступление в организм антигена и способны с ним специфически взаимодействовать. Совокупность сывороточ­ных белков, обладающих свойствами антител, называют иммуноглобулинами и обозначают символом Ig.

Существует пять различных классов иммуногло­булинов: IgG, IgМ, IgА, IgЕ, IgD Они различаются по молекулярной массе, содержа­нию углеводов, составу полипептидных цепей, коэффициентам седиментации и др.

Высокая нейтрализующая активность антител, принадлежащих к IgG, свидетель­ствует о важной роли их в антитоксическом иммунитете. Антитела IgМ особенно активны в реакциях фагоцитоза с корпускулярными антигенами и поэтому играют существенную роль в антимикробном иммунитете, В реакциях нейтрализации виру­сов особенно активны антитела IgА, следовательно, им принадлежит большая роль в противовирусном иммунитете. Кроме того, секреторные IgAs обусловливают мест­ный иммунитет слизистых оболочек. Наконец, антитела IgЕ, обладающие гомоцитотропностью, опосредуют реакции гиперчувствительности немедленного типа.

Реакция связывания комплемента.

Уникальная способность комплемента специфически связываться с различными по своей природе комплексами антиген + антитело нашла широкое применение в реакции связывания комплемента (РСК). Особое преимущество РСК состоит в том, что природа антигена, участвующего в ней (корпускулярный или раствори­мый), не имеет значения, так как комплемент связывается с Fс-фрагментом лю­бого антитела, относящегося к IgG и IgМ, независимо от его антительной специ­фичности. Кроме того, РСК очень чувствительна: она позволяет обнаружить количество антител в 10 раз меньшее, чем, например, в реакции преципитации. РСК была предложена в 1901 г. Ж. Борде и О. Жангу. В ее основе лежат два свой­ства комплемента:

3) способность связываться с комплексом антиген + антитело;

4) лизирование эритроцитов, использованных для получения гемолитической сыворотки.

РСК ставят в два этапа, и в ней соответственно участвуют две системы - опыт­ная, или диагностическая, и индикаторная. Диагностическая система состоит из исследуемой (или диагностической) сыворотки, которую перед постановкой реак­ции прогревают при 56 °С в течение 30 мин для инактивации имеющегося в ней комплемента, и антигена. К этой системе добавляют стандартный комплемент. Его источником служит свежая или высушенная сыворотка морской свинки. Смесь ин­кубируют при 37С в течение одного часа. Если в исследуемой сыворотке имеют­ся антитела, произойдет их взаимодействие с добавленным антигеном, и образую­щиеся комплексы антиген + антитело свяжут добавленный комплемент. Если же в сыворотке антитела отсутствуют, образования комплекса антиген + антитело не произойдет, и комплемент останется свободным. Никаких видимых проявлений связывания комплемента на этой стадии реакции обычно нет. Поэтому для выяс­нения вопроса, произошло или нет связывание комплемента, добавляют вторую, индикаторную систему (инактивированная гемолитическая сыворотка + эритроци­ты барана), и смесь всех компонентов РСК вновь инкубируют при 37С в течение 30-60 мин, после чего оценивают результаты реакции. В случае, если комплемент связался на первой стадии, в диагностической системе, т. е. в сыворотке больного имеются антитела, и произошло связывание комплемента комплексом антитело + + антиген, лизиса эритроцитов не будет - РСК положительна: жидкость бесцветна, на дне пробирки осадок эритроцитов. Если же в сыворотке специфические антите­ла отсутствуют и связывания комплемента в диагностической системе не произой­дет, т. е. РСК отрицательна, то неизрасходованный в диагностической системе Комплемент связывается с комплексом эритроциты + антитела индикаторной системы и произойдет гемолиз: в пробирке «лаковая кровь», осадка эритроцитов нет. Интенсивность РСК оценивают по четырехкрестной системе в зависимости от степени задержки гемолиза и наличия осадка эритроцитов. Реакция сопровожда­ется соответствующими контролями: контроль сыворотки (без антигена) и конт­роль антигена (без сыворотки), так как некоторые сыворотки и некоторые антигены обладают антикомплементарным действием. Перед постановкой РСК все компо­ненты, участвующие в ней, за исключением исследуемой сыворотки или антигена, подвергаются тщательному титрованию. Особенно важно ввести в реакцию точ­ную дозу комплемента, так как его нехватка или избыток могут привести к лож­ным результатам. Титром комплемента является то его минимальное количество, которое в присутствии рабочей дозы гемолитической сыворотки обеспечивает полное растворение эритроцитов. Для постановки основного опыта берут дозу комплемента, увеличенную на 20-25 % по сравнению с установленным титром. Титром гемолитической сыворотки является то ее максимальное разведение, кото­рое, будучи смешано с равным объемом 10 % раствора комплемента, полностью гемолизирует соответствующую дозу эритроцитов в течение 1 ч при температуре 37 °С. В основной опыт берут сыворотку, разведенную до 1/3 своего титра.

Непрямая реакция гемолиза используется как ускоренный метод обнаруже­ния специфических антител. В качестве носителя антигенов используют эритроциты. При наличии в сыворотке больного специфических антител сенсибилизированные эритроциты в присутствии комплемента лизируются.

Антигены. Определение понятия, свойства, химическая природа. Специфичное антигенов. Детерминантная группа (эпитоп), шлеппер. Полноценные и неполноценные антигены. Гаптены и полугаптены. Факторы, определяющие антигенность белка и ее специфичность.

Антигены - любые вещества, содержащиеся в микроорганизмах и других клетках или выделяемые ими, которые несут признаки генетически чуже­родной информации и при введении в организм вызывают развитие специфи­ческих иммунных реакций.

Реализация антигенности зависит от способности антиге­на метаболизироваться в организме, т. е. быть объектом разрушающего действия макрофагов и взаимодействовать с другими клетками иммунной системы. Благода­ря такому взаимодействию происходит распознавание антигенной специфичности. Все антигены обладают специфичностью, т. е. определенными особенностями, гене­тически детерминированными и связанными с их структурой, почему они и отлича­ются друг от друга.

Для характеристики микроорганизмов помимо родовой, видовой и групповой антигенной специфичности очень важное значение имеет определение типоспецифичности антигенов. Типоспецифичность - особенность антигенного строения, которая обусловливает различия среди особей одной группы сходных организмов данного вида и позволяет выделить среди них серотипы, или сероварианты (серовары). Выявление сероваров дает возможность осуществлять очень тонкую дифферен­циацию внутри вида микроорганизмов.

Изучение антигенных свойств различных сложных химических соединений - белков, полисахаридов, липидов, нуклеиновых кислот и т. д. - показало, что суще­ствует два типа антигенов - полноценные и неполноценные.

Полноценные антигены обладают обеими функциями антигена: способностью индуцировать образование антител и специфически с ними взаимодействовать.

Неполноценные антигены сами по себе способностью индуцировать образование антител не обладают, они приоб­ретают это свойство только после соединения с белками или другими полноценными антигенами. Такие неполноценные антигены называются гаптенами или полугаптенами.

Неполноценные антигены обладают только од­ним свойством антигена: они способны специфически взаимодействовать с теми антителами, в индукции синтеза которых они участвовали (после присоединения к белку и превращения в полноценные антигены).

Если взаимодействие неполноценного антигена с антителом сопровождается обычными иммунологическими реакциями, его называют гаптеном. Если неполно­ценный антиген имеет очень небольшую молекулярную массу и его взаимодействие с антителами не сопровождается обычными видимыми реакциями, его называют полугаптеном. О присутствии полугаптена в этом случае судят по тому признаку, что антитела, будучи связаны с полугаптеном, уже не проявляют себя в обычной реак­ции с полноценным антигеном (задерживающая реакция Ландштейнера).

Антигенное строение микробной клетки. Основные группы антигенов. Химическая природа антигенной специфичности. Значение изучения антигенов в серологической классификации микроорганизмов.

Для медицинской микробиологии наибольший интерес представляют антиген­ные свойства бактерий, токсинов и вирусов. Результаты их изучения используются в практике получения высокоэффективных иммуногенных препаратов, а также для совершенствования методов идентификации возбудителей болезней.

Антигенное строение микробной клетки. Н-, О- и К-антигены, токсины и ферменты бактерий как антигены. Перекрестнореагирующие антигены. Принципы определения антигенного состава бактерий, дифференциация общих (групповых) типоспецифических антигенов.

Антигенное строение микробной клетки. Обладая слож­ным химическим строением, бактериальная клетка представляет собой целый ком­плекс антигенов. Антигенными свойствами обладают жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплаз­мы, а также различные продукты белковой природы, выделяемые бактериями во внешнюю среду, в том числе токсины и ферменты. В связи с этим различают следу­ющие основные виды микробных антигенов: соматические, или О - антигены; жгути­ковые, или Н-антигены; поверхностные, или капсульные К-антигены.

Видовая специфичность - антигенные особенности, присущие представите­лям данного вида. Отпечаток видовой специфичности имеют многие макромолекулы данного организма. Определение видовых антигенов может быть использовано для дифференциации особей одного вида от другого.

Групповая специфичность - особенности антигенного строения, свойствен­ные определенной группе особей внутри данного вида организмов. Групповые анти­гены, позволяющие различать отдельных особей или группы особей внутри одного вида, называются изоантигенами.

Гетероспецифичность - антигенная специфичность, обусловленная наличием общих для представителей разных видов антигенов. Гетероантигены обусловливают перекрестные иммунологические реакции.

Типоспецифичность - особенность антигенного строения, которая обусловливает различия среди особей одной группы сходных организмов данного вида и позволяет выделить среди них серотипы, или сероварианты (серова- ры). Выявление сероваров дает возможность осуществлять очень тонкую дифферен­циацию внутри вида микроорганизмов.

Большинство современных классификаций патогенных микроорганизмов по­строены с учетом этих типов антигенной специфичности.

№ 6 Комплемент, его структура, функции, пути актива­ции, роль в иммунитете.
Природа и характеристика комплемента . Комплемент является одним из важных фак­торов гуморального иммунитета, играющим роль в защите организма от антигенов. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена. В состав комплемента входят 20 взаимодействующих между собой белков, девять из которых являются основными ком­понентами комплемента; их обозначают циф­рами: С1 , С2, СЗ, С4...С9. Важную роль играют также факторы В, D и Р (пропердин). Белки комплемента относятся к глобулинам и отличаются между собой по ряду физико-химических свойств. В частности, они сущес­твенно различаются по молекулярной массе, а также имеют сложный субъединичный состав: C 1- C 1 q , C 1 r , C 1 s ; СЗ-СЗа, СЗ b ; С5-С5а, С5 b и т. д. Компоненты комплемента синтези­руются в большом количестве (составляют 5-10% от всех белков крови), часть из них образуют фагоциты.
Функции комплемента многообразны: а) участвует в лизисе микробных и других клеток (цитотоксическое действие); б) обладает хемотаксической активностью; в) принимает учас­тие в анафилаксии; г) участвует в фагоцитозе. Следовательно, комплемент является компонен­том многих иммунологических реакций, направ­ленных на освобождение организма от микробов и других чужеродных клеток и антигенов (на­пример, опухолевых клеток, трансплантата).
Механизм активации комплемента очень сложен и представляет собой каскад фер­ментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стен­ку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый.
По классическому пути комплемент активирует­ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG . Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1 , который рас­падается на субъединицы C 1 q , C 1 r и С1 s . Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4 , С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента С3 активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется литический или мембраноатакующий комплекс который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.
Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В , D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути - образу­ется мембраноатакующий комплекс.
Лектиновый путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.
В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов - субъединицы СЗа и СЗ b , С5а и С5 b и дру­гие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, СЗ b - играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са 2 + и Mg 2+ .

Комплемент – это ферментная система, включающая около 20 белков, играющих существенную роль в неспецифической защите, течении воспаления и разрушении (лизисе) мембран бактерий и различных чужеродных клеток. В состав системы комплемента входят 9 компонентов, обозначаемых латинской буквой С (С1, С2, С3 и т. д.), причем первый из них состоит из 3 субкомпонентов – С1q, C1r и C1s. К системе комплемента относятся также регуляторные белки (В, D, P) и особые компоненты-ингибиторы, регулирующие активацию этой системы и циркулирующие в крови. К последним принадлежат С1-эстеразный ингибитор (С1-In), С3b-инактиватор, или фактор I, и фактор Н, вызывающие диссоциацию С3b на неактивные субъединицы. Большая часть компонентов комплемента синтезируется гепатоцитами и мононуклеарными фагоцитами (макрофагами и моноцитами). Все компоненты комплемента циркулируют в крови в неактивном состоянии.

В процессе активации системы комплемента отдельные её компоненты разбиваются на большие (b) и малые (а) фрагменты, оказывающие непосредственное влияние на течение специфических и неспецифических защитных реакций. Исключение из этого правила составляют лишь фрагменты С2а и С2b, которые поменялись своими местами (С2а – большой, С2b – малый фрагмент).

По образному выражению американского иммунолога Хью Барбера, реакция антиген-антитело – это лишь объявление войны, активация системы комплемента – это мобилизация солдат на битву. Стрелять же начинают тогда, когда появляются активные фрагменты комплемента и мембранатакующий комплекс (МАК).

Существуют классический и альтернативный пути активации системы комплемента . Остановимся вкратце на характеристике отдельных компонентов системы комплемента по мере их активации по тому и другому пути.

Классический путь активации.

С1 -компонент представляет собой Са 2+ -зависимое соединение 3-х субкомпонентов. Молекула С1q имеет 6 валентностей для связывания с иммуноглобулинами, после чего происходит переход проферментов С1r и C1s в активное состояние, благодаря чему активируются компоненты С2 и С4.

С2 расщепляется активным субкомпонентом С1s на 2 фрагмента – малый (С2b) и большой (С2а).

С4 расщепляется на малый (С4а) и большой (С4b) фрагменты, после чего оба фрагмента прикрепляются к комплексу Аг+Ат, или к мембране клетки, если Аг с ней связан. В результате этих реакций образуется С3-конвертаза (С4bС2а).

С3 является компонентом, благодаря которому осуществляются основные функции системы комплемента. Он расщепляется С3-конвертазой на малый (С3а) и большой (С3b) фрагменты. Частично С3b оседает на мембране и через него происходит соединение с фагоцитами. Другая часть С3b остается связанной с С2а и С4b, благодаря чему образуется С5-конвертаза (С4bС2аС3b). Существуют инактиваторы, разрушающие С3b на малые фрагменты С3c (cвободный) и С3е (связанный с мембраной).

С5 расщепляется С5-конвертазой на малый (С5а) и большой (С5b) фрагменты. Фрагменты С3а и С5а воздействуют на тучные клетки и вызывают их дегрануляцию. Кроме того, они стимулируют функцию гранулоцитов и гладких мышц, способствуя развитию воспалительных процессов. Фрагмент С5b инициирует сборку мембранатакующего комплекса (МАК).

Альтернативный путь активации.

Фактор В – белок с ММ 100000 Да, образующий комплекс с С3b, независимо от того, продуктом какого пути он является.

Фактор D является ферментом с ММ около 25000 Да, действующим на комплекс С3bB, в результате чего образуется конвертаза (С3bBb).

Фактор Р – белок, стабилизирующий комплекс С3bB, который расщепляет С3 на фрагменты С3а и С3b. Образующийся С3b взаимодействует с факторами В и D, в результате чего по механизму обратной связи резко увеличивается концентрация С3b. Эта реакция ограничивается факторами I и Н, инактивирующими С3.

Компоненты С5, С6, С7, С8, С9 являются общими для классического и альтернативного пути активации системы комплемента. При этом компонент С9 по структуре и свойствам напоминает перфорин ЦТЛ и NК-лимфоцитов.

Главными инициаторами классического пути активации системы комплемента являются иммунные комплексы (Аг+Ат), стафилококки (белок А), комплексы С-реактивного белка с лигандами, некоторые вирусы и пораженные вирусом клетки, цитоскелетные элементы клеток и другие. Классический путь начинается с активации С1-компонента, включающего каскадно его субкомпоненты (С1q, C1r, C1s), С4, С2, С3 и последующие вплоть до С9.

МАК представляет собой полый белковый цилиндр (высота 160 Å, внутренний же диаметр колеблется в зависимости от количества встроенных молекул С9), погружающийся за счет гидрофобных компонентов С9 в фосфолипидную часть мембраны чужеродных клеток. Следовательно, МАК выполняет функции перфорина. Благодаря образующимся отверстиям в мембране, содержимое клетки вытекает наружу, и она гибнет. Гибель же собственных клеток предотвращается из-за наличия в мембране видоспецифических ингибиторов комплементарной активации (С3b, C4b) и С8-связывающего белка.

Рецепторы к комплементу обнаружены на эритроцитах, фагоцитах, эндотелиоцитах, тучных клетках и В-лимфоцитах. Все они связывают продукты расщепления С3-компонента комплемента.

Система комплемента выполняет следующие функции:

  1. Опсоническую , т.е. стимулирует фагоцитоз. Эти эффекты осуществляются под воздействием С3b, C1q, Bb, C4b, C5b, C5b6, C5b67;

  2. Хемотаксическую – за счет С5а, С3е, С3а и др.;

  3. Активацию тучных клеток , в результате чего выделяется гистамин, расширяющий капилляры и вызывающий локальное покраснение при воспалении и аллергических реакциях; эта функция связана с фрагментами С5а, С3а, Ва, С4а;

  4. Лизис бактерий, чужеродных, а также старых клеток , с поверхности которых “слущиваются” защитные белки;

  5. Растворение иммунных комплексов, осуществляемое фрагментами С3b и C4b.

Участие системы комплемента в очищении сосудистого русла от попавших в кровь единичных бактериальных клеток связано с активацией по альтернативному пути. В результате иммунного ответа в сыворотке крови накапливаются к этим бактериям Ат. При взаимодействии этих Ат с Аг на поверхности бактерий создаются условия активации системы комплемента по классическому пути, в результате чего осуществляется бактериолизис (рис. 9).

У людей с дефицитом С1-С4 компонентов комплемента наблюдаются частые рецидивы воспалительных заболеваний и гноеродной инфекции. Дефицит фактора Р, стабилизирующего многомолекулярный ферментативный комплекс С5-конвертазы альтернативного пути, сопровождается повышением чувствительности к гонококкам и менингококкам.

Падение активности системы комплемента (гипокомплементемия ) может быть вызвано снижением продукции компонентов комплемента, либо повышенным их потреблением. Последнее может быть обусловлено появлением иммунных комплексов, которые связывают комплемент и вместе с ним захватываются фагоцитирующими клетками. Таким образом очищается сосудистое русло от избытка ИК. Гипокомплементемия – довольно частое явление, встречающееся при аутоиммунных процессах и других заболеваниях, что пагубно отражается на состоянии больного.

На других видах неспецифической резистентности мы остановимся при знакомстве с иммунитетом.

Комплемент – сложный белковый комплекс сыворотки крови. Система комплементасостоит из 30 белков (компонентов, или фракций , системы комплемента). Активируется система комплемента за счет каскадного процесса: продукт предыдущей реакции исполняет роль катализатора последующей реакции. Причем при активации фракции компонента происходит, у первых пяти компонентов, ее расщепление. Продукты этого расщепления и обозначаются как активные фракции системы комплемента .

1. Больший из фрагментов (обозначаемый буквой b), образовавшихся при расщеплении неактивной фракции, остается на поверхности клетки – активация комплемента всегда происходит на поверхности микробной клетки, но не собственных эукариотических клеток. Этот фрагмент приобретает свойства фермента и способность воздействовать на последующий компонент, активируя его.

2. Меньший фрагмент (обозначается буквой a) является растворимым и «уходит» в жидкую фазу, т.е. в сыворотку крови.

В. Фракции системы комплемента обозначаются по-разному.

1. Девять – открытых первыми – белков системы комплемента обозначаются буквой С (от английского слова complement) с соответствующей цифрой.

2. Остальные фракции системы комплемента обозначаются другими латинскими буквами или их сочетаниями.

Пути активации комплемента

Существуют три пути активации комплемента: классический, лектиновый и альтернативный.

А. Классический путь активации комплемента является основным . Участие в этом пути активации комплемента – главная функция антител.

1. Активацию комплемента по классическому пути запускает иммунный комплекс : комплекс антигена с иммуноглобулином (класса G или М). Место антитела может «занять» С-реактивный белок – такой комплекс также активирует комплемент по классическому пути.

2. Классический путь активации комплемента осуществляется следующим образом.

а. Сначала активируется фракция С1 : она собирается из трех субфракций (C1q, C1r, C1s) и превращается в фермент С1-эстеразу (С1qrs).

б. С1-эстераза расщепляет фракцию С4 .

в. Активная фракция С4b ковалентно связывается с поверхностью микробных клеток - здесь присоединяет к себе фракцию С2 .

г. Фракция С2 в комплексе с фракцией С4b расщепляется С1-эстеразой с образованием активной фракции С2b .

д. Активные фракции С4b и С2b в один комплекс – С4bС2b – обладающий ферментативной активностью. Это так называемая С3-конвертаза классического пути .

е. С3-конвертаза расщепляет фракцию С3 , нарабатываю большие количества активной фракции С3b.

ж. Активная фракция С3b присоединяется к комплексу С4bС2b и превращает его в С5-конвертазу (С4bС2bС3b ).

з. С5-конвертаза расщепляет фракцию С5 .

и. Появившаяся в результате этого активная фракция С5b присоединяет фракцию С6 .

к. Комплекс С5bС6 присоединяет фракцию С7 .

л. Комплекс С5bС6С7 встраивается в фосфолипидный бислой мембраны микробной клетки .

м. К этому комплексу присоединяется белок С8 и белок С9 . Данный полимер формирует в мембране микробной клетки пору диаметром около 10 нм, что приводит к лизису микроба (так как на его поверхности образуется множество таких пор – «деятельность» одной единицы С3-конвертазы приводит к появлению около 1000 пор). Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).

Б. Лектиновый путь активации комплемента запускается комплексом нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (с остатками маннозы).

В
.Альтернативный путь активации комплемента начинается с ковалентного связывания активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.

1. Дальнейшие события развиваются следующим образом.

а. С3b связывает фактор В , образуя комплекс С3bВ.

б. В связанном с С3b виде фактор В выступает в качестве субстрата для фактора D (сывороточной сериновой протеазы), которая расщепляет его с образованием активного комплекса С3bВb . Этот комплекс обладает ферментативной активностью, структурно и функционально гомологичен С3-конвертазе классического пути (С4bС2b) и называется С3-конвертазой альтернативного пути .

в. Сама по себе С3-конвертаза альтернативного пути нестабильна. Чтобы альтернативный путь активации комплемента успешно продолжался этот фермент стабилизируется фактором Р (пропердином).

2. Основное функциональное отличие альтернативного пути активации комплемента, по сравнению с классическим, заключается в быстроте ответа на патоген: так как не требуется время для накопления специфических антител и образования иммунных комплексов.

Г. Важно понимать, что и классический и альтернативный пути активации комплемента действуют параллельно , еще и амплифицируя (т.е. усиливая) друг друга. Другими словами комплемент активируется не «или по классическому или по альтернативному», а «и по классическому и по альтернативному» путям активации. Это, еще и с добавлением лектинового пути активации, – единый процесс, разные составляющие которого могут просто проявляться в разной степени.

Функции системы комплемента

Система комплемента играет очень важную роль в защите макроорганизма от патогенов.

А. Система комплемента участвует в инактивации микроорганизмов , в т.ч. опосредует действие на микробы антител.

Б. Активные фракции системы комплемента активируют фагоцитоз (опсонины - С3b и C 5 b ) .

В. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции .

Активные фракции комплемента С3а и С5а называются анафилотоксинами , так как участвуют, помимо прочего, в аллергической реакции, называемой анафилаксия. Наиболее сильным анафилотоксином является С5а. Анафилотоксины действуют на разные клетки и ткани макроорганизма.

1. Действие их на тучные клетки вызывает дегрануляцию последних.

2. Анафилотоксины действуют также на гладкие мышцы , вызывая их сокращение.

3. Действуют они и на стенку сосуда : вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации (выхода) из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.

Корме того, анафилотоксины являются иммуномодуляторами , т.е. они выступают в роли регуляторов иммунного ответа.

1. С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).

2. С5а является иммуностимулятором (т.е. усиливает иммунный ответ).

ВОПРОС 10 «Иммунитет – понятие. Классификация форм иммунитета. Органы иммунной системы. Иммуногенез»

Под иммунитетом понимают защитные механизмы , которые реализуются с участием лимфоцитов и направлены на распознавание и элиминацию из внутренней среды организма группы молекул или даже частей молекул, рассматриваемые как «чужеродная метка». Для обозначения такой метки, которую иммунитет расценивает как «свое» или «чужое», используется термин антиген . Распознавая эти «метки» – антигены, иммунитет удаляет из внутренней среды организма:

    собственные, ставшие по разным причинам ненужными, клетки,

    микроорганизмы,

    пищевые, ингаляционные и аппликационные внешние вещества,

    трансплантаты.

Выделяют две основные формы иммунитета - видовой (врожденный) и приобретенный. Существует классификация приобретенного иммунитета в зависимости от его происхождения, согласно которой он подразделяется на естественный (не путать с естественным иммунитетом, обусловленным факторами неспецифической резистентности) и искусственный.

А. Естественный приобретенный иммунитет формируется естественным путем (откуда и название).

1. Активный естественный приобретенный иммунитет формируется в результате перенесенной инфекции и поэтому называется постинфекционным .

2. Пассивный естественный приобретенный иммунитет формируется за счет материнских антител, поступающих в организм плода через плаценту, а после рождения – в организм ребенка с материнским молоком. Вследствие этого этот вид иммунитета называется материнским .

Б. Искусственный приобретенный иммунитет формируется у пациента врачом.

1. Активный искусственный приобретенный иммунитет формируется в результате вакцинации и поэтому называется поствакцинальным .

2. Пассивный искусственный приобретенный иммунитет формируется в результате введения лечебно-профилактических сывороток и поэтому называется постсывороточным .

Приобретенный иммунитет может быть также стерильный (без наличия возбудителя) и нестерильный (существующий в присутствии возбудителя в организме), гуморальный и клеточный, системный и местный, по направленности - антибактериальный, антивирусный, антитоксический, противоопухолевый, антитрансплантационный.

Иммунная система - совокупность органов, тканей и клеток, обеспечивающих клеточно-генетическое постоянство организма. Принципы антигенной (генетической) чистоты основываются на распознавании “своего - чужого” и в значительной степени обусловлены системой генов и гликопротеидов (продуктов их экспрессии)- главным комплексом гистосовместимости (MHC ), у человека часто называемой системой HLA (human leukocyte antigens).

Органы иммунной системы.

Выделяют центральные (костный мозг - кроветворный орган, вилочковая железа или тимус, лимфоидная ткань кишечника) и периферические (селезенка, лимфатические узлы, скопления лимфоидной ткани в собственном слое слизистых оболочек кишечного типа) органы иммунитета.

    Иммунная система включает:

    ЛИМФОИДНУЮ СИСТЕМУ (лимфоидные органы и лимфоциты)

    МОНОЦИТАРНО-МАКРОФАГАЛЬНУЮ СИСТЕМУ (моноциты, тканевые макрофаги , дендритные клетки , микрофаги или полиморноядерные гранулоциты – это базофилы, эозинофилы, нейтрофилы).

    Иммунная система включает уровни:

    Органный уровень

    Клеточный уровень (макрофаги и микрофаги, Т и В лимфоциты, моноциты, тромбоциты и другие клетки)

    Гуморальный или молекулярный уровень (иммуноглобулины или антитела, цитокины, интерфероны т.д.).

ЦИТОКИНЫ – биологические активные молекулы, которые обеспечивают взаимодействие клеток иммунной системы друг с другом и с другими системами

    ОРГАНЫ иммунной системы

А. ЦЕНТРАЛЬНЫЕ ОРГАНЫ:

    Тимус

    Костный мозг

ФУНКЦИЯ: Образование, антиген-независимая дифференциация и пролиферация иммунокомпетентных клеток .

В. ПЕРИФЕРИЧЕСКИЕ ОРГАНЫ:

    Лимфатические узлы

    Селезенка

    Лимфоидная ткань слизистых оболочек (Пейеровые бляшки кишечника, аппендикс, миндалины, диффузные скопления лимфоцитов в лёгких и кишечнике и др.).

ФУНКЦИЯ: Антиген-зависимая дифференциация и пролиферация иммунокомпетентных клеток.

Клетки-предшественники иммунокомпетентных клеток продуцируются костным мозгом. Некоторые потомки стволовых клеток становятся лимфоцитами. Лимфоциты подразделяют на два класса - Т и В. Предшественники Т- лимфоцитов мигрируют в тимус, где созревают в клетки, способные участвовать в иммунном ответе. У человека В - лимфоциты созревают в костном мозге. У птиц незрелые В- клетки мигрируют в сумку (бурсу) Фабрициуса, где достигают зрелости. Зрелые В- и Т- лимфоциты заселяют периферические лимфоузлы. Таким образом, центральные органы иммунной системы осуществляют образование и созревание иммунокомпетентных клеток, периферические органы обеспечивают адекватный иммунный ответ на антигенную стимуляцию- “обработку” антигена, его распознавание и клональную пролиферацию лимфоцитов - антиген-зависимую дифференцировку.

2024 kidspartyband.ru. Литература в школе.