Определение микроорганизмов таксономия основные принципы классификации микробов. Современная классификация микроорганизмов


Вирусы - мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в цитоплазме или ядре клетки. Они - автономные генетические структуры. Отличаются особым - разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом.

Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы. Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид. Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.

Тип симметрии . Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа).

Включения - скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения - тельца Гварниери; вирусы герпеса и аденовирусы - внутриядерные включения.

Вирусы имеют уникальный геном , так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом. Минус-нить РНК этих вирусов выполняет только наследственную функцию. Кроме обычных вирусов , известны и так называемые неканонические вирусы - прионы - белковые инфекционные частицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10-20x100-200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономного гена человека или животного и вызывают у них энцефалопатии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта-Якоба, куру и др.). Другими необычными агентами , близкими к вирусам , являются вироиды - небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белка, вызывающие заболевания у растений.


  1. Антигены: определение, основные свойства.
Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение. Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

Под антигенностью понимают потенциальную способность молекулы антигена активировать компоненты иммунной системы и специфически взаимодействовать с факторами иммунитета. Иными словами, антиген должен выступать специфическим раздражителем по отношению к иммунокомпетентным клеткам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее небольшим участком, который получил название «антигенная детерминанта», или «эпитоп». Иммуногенность - потенциальная способность антигена вызывать по отношению к себе в макроорганизме специфическую защитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма. К первой группе факторов отнесены природа, химический состав, молекулярный вес, структура и некоторые другие характеристики. Большое значение имеет размер и молекулярная масса антигена.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведения. На иммунный ответ влияет количество поступающего антигена: чем его больше, тем более выражен иммунный ответ. Третья группа объединяет факторы , определяющие зависимость иммуногенности от состояния макроорганизма. В этой связи на первый план выступают наследственные факторы.

Специфичностью называют способность антигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обусловлено особенностями формирования иммунного ответа - необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов.

Антигены бактериальной клетки. В структуре бактериальной клетки различают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены, локализуются в локомоторном аппарате бактерий - их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При нагревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген. Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу составляют ЛПС. О-антиген проявляет термостабильные свойства - он не разрушается

Лекция №1

Введение. Принципы классификации микробов. Организация

микробиологической службы.

Для специальностей «Сестринское дело», «Лечебное дело», «Акушерское дело»,

«Фармация»,

1. Понятие и микробиологии. Разделы микробиологии.

2. Краткий исторический очерк развития.

3. Принципы классификации микроорганизмов.

4. Морфология бактерий.

5. Строение бактериальной клетки.

Понятие о микробиологии

Микробиология - это наука о микроорганизмах, мельчайших, невидимых глазу существах. Микробы- это самые первые обитатели нашей планеты, играющие и положительную и отрицательную роль в жизни человека.

Значение микробов в природе:

· Микробы имеют первостепенное значение в кругообороте веществ в природе. Если бы не было микробов, то Земля была бы завалена останками отмерших животных и растений.

· Полезные свойства микробов человек использует при получении пива, вина, в хлебопечении.

· Микробы используют при получении лекарств (антибиотиков, витаминов, ферментов и т.д.).

·Одновременно многие микробы патогенны для человека. Они и являются предметом изучения медицинской микробиологии.

Разделы микробиологии

· Промышленная микробиология.

· Сельскохозяйственная.

· Морская.

· Космическая.

· Ветеринарная.

· Медицинская.

· Санитарная (микроэкология).

История развития микробиологии

Первые сведения о микроорганизмах появились в 17 веке- итальянский ученый Джироламо Фракосторо сделал предположение, что причиной возникновения инфекционных болезней являются мельчайшие невидимых глазу зверьков, которые он назвал «контагиями»(отсюда произошло слово контагиозность). Развитие микробиологии началось только после изобретения микроскопа голландским естествоиспытателем Антонио Левенгуком. С этого момента начался морфологический (описательный период в развитии микробиологии.

Но подлинно научное развитие микробиология приобрела только в конце 18-го и в 19-м веке, когда стали открывать возбудителей инфекционных болезней и начался физиологический период. Роберт Кох открыл возбудителей сибирской язвы, туберкулеза, холеры. И.И.Мечников и Пауль Эрлих обосновали теории иммунитета. Луи Пастер создал вакцины от бешенства, сибирской язвы.

Классификация микроорганизмов

Современная классификация микроорганизмов была предложена в 1980 году американским микробиологом Берджи . До настоящего времени она прошла 7 переизданий, т.к. постоянно изменяется, дополняется.

· По этой классификации весь мир микробов делится на 3 царства:

1. прокариоты (микробы с неоформленным ядром),

2. эукариоты (микробы с оформленным ядром)

3. вирусы (неклеточная форма жизни).

Внутри каждого царства идет деление на следующие структурные единицы:

царства- отделы-классы-порядки-семейства-роды- виды. Таким образом, вид является самой мелкой структурной единицей.

Но внутри вида есть деление на биовары, хемовары, серовары, фаговары и т.д.

Вид – это совокупность микроорганизмов, имеющих общее происхождение (генетическое родство), морфологические, физиологические свойства и обмен веществ.

В названии микроба используется бинарная (двойная) номенклатура: первое слово означает род и пишется с большой буквы, второе слово означает вид и пишется с

маленькой буквы. Напр., Staphylococcus aureus. Рассмотрим наиболее важные классы микроорганизмов, входящих в царства.

Рабочие классификации микроорганизмов

· А)по количеству клеток- все классы микроорганизмов относятся к одноклеточным, кроме грибов (большинство их- многоклеточные)

· Б) по происхождению- большинство прокариотов и эукариотов имеют растительное происхождение, кроме- простейших (они произошли из животной клетки)

ОРГАНИЗАЦИЯ ЛАБОРАТОРНОЙ МИКРОБИОЛОГИЧЕСКОЙ СЛУЖБЫ

Объект изучения медицинских микробиологических лабораторий -

патогенные биологические агенты (ПБА):

Патогенные для человека микроорганизмы (вирусы, бактерии, грибы, простейшие и т.д.);

Генно-инженерно модифицированные микроорганизмы;

Яды биологического происхождения (токсины), гельминты;

Биоматериал (включая кровь, биологические жидкости и экскременты организма человека), подозрительный на содержание ПБА.

Классификация микробиологических лабораторий по характеру выполняемых исследований:

Диагностические (проводят исследования с целью обнаружения и идентификации возбудителя, его антигена или специфических антител к нему);

Производственные (осуществляют ведомственный лабораторный контроль выпускаемой предприятием продукции на ее соответствие нормативной документации по санитарно-показательным микроорганизмам.

Научно-исследовательские

Классификация микробиологических лабораторий по изучаемым микроорганизмам

 Бактериологические;

 Вирусологические;

 Микологические;

 Протозоологические

Классификация возбудителей инфекционных заболеваний по степени опасности работы с ними

Г р уппа I: возбудители особо опасных инфекций: чума, натуральная оспа, лихорадки Ласса, Эбола и др.

Г р уппа II: возбудители высококонтагиозных эпидемических заболеваний человека: сибирская язва, холера, лихорадка Скалистых гор, сыпной тиф, бластомикоз, бешенство и др. В эту группу также включён ботулотоксин (но не сам возбудитель ботулизма)

Г р уппа III: возбудители бактериальных грибковых, вирусных и протозойных инфекций, выделенных в отдельные нозологические формы (возбудители коклюша, столбняка, ботулизма,туберкулёза, кандидоза, малярии, лейшманиоза, гриппа, полиомиелита и др.). В эту группу также включены аттенуированные штаммы бактерий групп I, II и III.

Г р уппа IV: условно-патогенные микробы- возбудители оппортунистических инфекций

В зависимости от уровня безопасности работы с микроорганизмами

лаборатории подразделяют на четыре группы риска:

Первая группа риска: лаборатории особого режима (максимально

изолированные) с высоким индивидуальным и общественным риском.  Вторая группа риска: режимные лаборатории (изолированные) с высоким индивидуальным и низким общественным риском.

Т ретья группа риска: базовые (основные) лаборатории с умеренным

индивидуальным и ограниченным общественным риском.

Четвёртая группа риска: базовые (основные) лаборатории с низким

индивидуальным и общественным риском.

В системе Министерства здравоохранения и Г осударственного комитета с анитарно- эпидемиологического надзора РФ наиболее разветвлена сеть бактериологических лабораторий :

 бактериологические лаборатории в составе ЛПУ;

 бактериологические лаборатории в составе комитетов Госсанэпиднадзора;

 учебные бактериологические лаборатории ВУЗов;

 проблемные и отраслевые бактериологические лаборатории

научно-исследовательских институтов и предприятий по выпуску

бактерийных препаратов;

 специализированные бактериологические лаборатории по контролю за особо опасными инфекциями;

 специализированные бактериологические лаборатории по контролю за отдельными группами бактерий: микобактериями, риккетсиями, лептоспирами и др.

Большая часть микробиологических лабораторий работает с ПБА групп III и IV, а изучением возбудителей особо опасных инфекций (группы I и II) занимаются только специализированные лаборатории.

Т ребования к проведению работ в микробиологической лаборатории

 Работу с ПБА групп III и IV выполняют специалисты с высшим и средним специальным образованием. К ней допускают сотрудников, прошедших инструктаж по соблюдению требований безопасности работы с ПБА; последующий инструктаж следует проводить не реже одного раза в год. Все сотрудники, работающие с ПБА, должны находиться на диспансерном учёте.

 Приборы, оборудование и средства измерения должны быть аттестованы, технически исправны и иметь технический паспорт. Их метрологический контроль и техническое освидетельствование следует проводить в установленные сроки.

Из правил работы в «грязной зоне» базовой лаборатории:

Обязательно использование спецодежды и средств индивидуальной защиты. Перед работой следует проверить качество посуды, пипеток, шприцев и другого оборудования. При пипетировании.необходимо пользоваться только резиновыми грушами или автоматическими устройствами. Строго запрещено пипетировать материал ртом, переливать его черёз край (пробирки, колбы), а также оставлять без надзора рабочее место во время выполнения любых работ с ПБА.

В грязной зоне запрещается курить, пить воду, хранить верхнюю одежду, головные уборы, обувь, пищевые продукты. В помещения зоны нельзя приводит ь детей и домашних животных:

После окончания работы все объекты, содержащие ПБА, должны быть убраны в хранилища (холодильники, термостаты, шкафы) с обязательной дезинфекцией столов.

Использованные пипетки полностью (вертикально) погружают в дезинфицирующий раствор, избегая образования пузырьков в каналах. Остатки ПБА, использованную посуду и оборудование собирают в закрывающиеся ёмкости и передают в автоклавную.

Категорически запрещено сливать отходы с ПБА в канализацию без предварительного обеззараживания. После окончания работы с ПБА и заражёнными животными, а также после ухода из лаборатории следует тщательно вымыть руки.

Лекция № 2.

Тема: « Морфология бактерий»

  1. Морфология бактерий.
  2. Строение бактериальной клетки.

1 .Морфология бактерий.

По морфологии все бактерии делятся на 3 группы:

Шаровидные (кокки)

Палочковидные (палочки)

Шаровидные бактерии (кокки)

Имеют шаровидную форму, размеры 0,5-1 мкм, неподвижны.. По взаиморасположению делятся на 6 морфологических групп:

  1. Микрококки- поодиночно расположенные кокки (напр., возбудители бруцеллеза)
  2. Диплококки- попарно расположенные кокки (возбудители гонореи, менингококковой инфекции, пневмонии).
  3. Стрептококки- расположены цепочкой (напр., возбудители гнойно-воспалительных заболеваний кожи, подкожной клетчатки и внутренних органов).
  4. Стафилококки- расположены кучкой, как гроздья винограда (это тоже возбудители
  5. Тетракокки- расположены по 4 клетки, непатогенны для человека.
  6. Сарцины- расположены по 8-16 клеток, тюками, непатогенны.

Такое взаиморасположение кокков связано с особенностями их деления.

Палочковидные бактерии.

Имеют цилиндрическую форму, размерами 1-6 мкм, есть подвижные и неподвижные. Концы их могут быть закругленные, обрубленные, заостренные, утолщенные и т.д. Среди них есть спорообразующие.

Палочковидные бактерии

Спорообразующие Неспорообразующие

Аэробы Анаэробы

Бациллы Клостридии

Диаметр спор у клостридий превышает поперечник клетки в отличие от бацилл.

По взаиморасположению палочки могут быть расположены поодиночно, попарно, цепочкой, под углом друг к другу и т.д.

Извитые бактерии.

Имеют спиралевидную форму. По количеству завитков их делят на:

  1. Сильно извитые- сейчас они выделены в класс спирохет.
  2. Слабо извитые- спириллы.
  3. Вибрионы- имеют форму запятой, являются возбудителями холеры.

2 .Строение бактериальной клетки.

Бактериальная клетка имеет основные (есть у всех бактерий) и дополнительные (встречаются не у всех бактерий) структуры.

К основным структурам относятся:

  1. 3-х слойная клеточная оболочка (слизистый слой, клеточная стенка, цитоплазматическая мембрана).
  2. Цитоплазма.
  3. Ядерное вещество.
  4. Рибосомы.
  5. Включения.

К дополнительным структурам относятся:

  1. Споры.
  2. Жгутики.
  3. Ворсинки.
  4. Капсулы.

Рассмотрим строение и функции клеточных структур.

Основные структуры бактериальной клетки.

Слизистый слой .- все бактерии покрыты слоем слизи, который защищает их от действия фагоцитов.

Клеточная стенка- это каркас клетки. Прочность ее зависит от содержания вещества гликопротеина. Если в клеточной стенке гликопротеина много, то она толстая, и при окраске по Граму бактерии окрашиваются в сине-фиолетовый цвет и называются Грам-положительными. Если в клеточной стенке гликопротеина мало, то она тонкая, и при окраске по Граму бактерии окрашиваются в розово-красный цвет и называются Грам-отрицательными. Клеточная стенка выполняет следующие функции:

  1. Сохраняет форму клетки.
  2. Поддерживает осмотическое давление в клетке
  3. Обеспечивает избирательную проницаемость клетки.

Бактерии с частично или полностью разрушенной клеточной стенкой нежизнеспособны. Но, иногда при неправильном лечении антибиотиками образуются особые формы микроорганизмов- L-формы. Это микробы с частично или полностью разрушенной клеточной стенкой, но сохраняющие жизнеспособность. После прекращения антибиотикотерапии L-формы восстанавливают свою клеточную стенку, что является причиной хронизации и рецидивов болезни.

Цитоплазматическая мембрана - очень тонкая, прилежит непосредственно к цитоплазме, на ней содержится множество ферментов. Выпячивания цитоплазматической мембраны в цитоплазму называются мезосомами и участвуют в делении клетки.

  1. Участвует в обмене веществ
  2. Участвует в дыхании бактерии.
  3. Участвует в делении клетки.

Цитоплазма - это внутреннее содержимое клетки, состоящее из органических, неорганических веществ и воды. Функции: это среда в которой проходят все жизненно важные процессы бактериальной клетки.

Ядерное вещество (нуклеоид) - распылено по всей цитоплазме и не имеет собственной оболочки. Состоит из двойной нити ДНК, свернутой в кольцо. Функции: хранение наследственной информации.

Рибосомы - бактерии имеют множество рибосом, распределенных по всей цитоплазме. Функции: синтез белка.

Включения - это зерна жира, крахмала, волютина, гликогена. Функции- запас питательных веществ.

Дополнительные структуры бактериальной клетки.

Споры- образуются при попадании бактерий в неблагоприятные условия внешней среды. Они представляют собой уплотненный участок цитоплазмы с ядерным веществом и собственной плотной оболочкой (т.е. это как бы клетка в клетке). Спора содержит мало воды, но много солей кальция и жиров, поэтому она очень устойчива во внешней среде. Споры не погибают при кипячении, под действием дезинфектантов. Они разрушаются лишь при температуре выше 120 град (в автоклаве и сухожаровом шкафу). При попадании в благоприятные условия спора прорастает в вегетативную форму и микроб начинает расти и размножаться. В бактериальной клетке споры могут располагаться центрально, терминально и субтерминально.

Функции: защита от неблагоприятных условий окружающей среды.

Жгутики-- Отходят от базального тельца, расположенного в цитоплазме, на поверхность бактериальной клетки. Состоят из белка флагеллина. По количеству жгутиков бактерии делят на:

  1. Монотрихи- имеют 1 жгутик.
  2. Перитрихи- множество жгутиклв по всей поверхности.
  3. Амфитрихи- пучок жгутиков с 2-х концов.
  4. Лофотрихи- пучок жгутиков с одного конца.

Функции- это органы движения бактериальной клетки.

Реснички (пили, ворсинки, фимбрии). – расположены по всей поверхности бактериальной клетки, тонкие, состоят из белка пилина.

  1. Обеспечивают прилипание (адгезию) бактерий к клеткам макроорганизма.
  2. Через пили может происходить передача наследственной информации из клетки в клетку.

Капсула- это утолщенный слизистый слой.

Функции: обеспечивают защиту бактерий от действия фагоцитов макроорганизма.

Лекция № 3.

Тема: «Морфология микробов (продолжение)»

План.

  1. Общая характеристика основных классов микроорганизмов из царства прокариотов (спирохет, риккетсий, хламидий, микоплазм, актиномицетов).
  2. Общая характеристика грибов.
  3. Общая характеристика вирусов.

1. Общая характеристика основных классов микроорганизмов из царства прокариотов.

Спирохеты.

  1. боррелии- имеют 4-6 крупных неравномерных завитков, являются возбудителями возвратного тифа;
  2. трепонемы- имеют 8-12 мелких равномерных завитков, являются возбудителями сифилиса;
  3. лептоспиры- имеют 12-16 мелких равномерных завитков и концы их загнуты в виде крючков.

Риккетсии.

Риккетсии являются возбудителями сыпного тифа, лихорадки Ку и других риккетсиохов.

Хламидии.

1. элементарные тельца (ЭТ)- мелкие, располагаются в межклеточном пространстве, не способны к делению.

2. ретикулярные тельца (РТ)- образуются при проникновении хламидий в чувствительную клетку хозяина. Они увеличиваются в размерах и начинают делиться. Затем РТ обратно трансформируются в ЭТ, но уже нового поколения. Образуется микроколония хламидий, в результате чего клетка-хозяина гибнет и в межклеточное пространство попадает множество новообразованных ЭТ, которые инфицируют новые клетки. Внутриклеточный цикл развития хламидий длиться 48-72 часа.

Хламидии являются возбудителями следующих заболеваний:

Урогенитальный хламидиоз

Трахома

Орнитоз

Венерическая лимфогранулема.

Микоплазмы.

Микоплазмы являются возбудителями следующих заболеваний:

Урогенитальный микоплазмоз

Микоплазменная пневмония.

Актиномицеты.

В переводе означает -лучистые грибы, т.е. актиномицеты раньше относили к грибам. Но сейчас доказано отсутствие у них оформленного ядра. Актиномицеты встречаются в 2-х формах:

В виде длинных ветвящихся клеток, напоминающих мицелий;

В виде крупных грамположительных палочек.

Среди актиномицетов есть патогенные, которые вызывают актиномикоз, нокардиоз, и непатогенные – их используют для получения антибиотика стрептомицина.

Грибы.

Грибы- это низшие растения, не имеющие хлорофилла. В настоящее время их насчитывается более 90 тыс.разновидностей, 500 из них патогенны для человека. Грибы относятся к царству эукариотов, т.е. имеют оформленное ядро, отдел - Eu Mycota.

Грибы характеризуются общим типом строения. Все грибы имеют клеточную стенку с уникальным химическим составом - туда входят целлюлозо- и хитиноподобные вещества. Встречаются в 2-х формах:

А) дрожжевая - это крупные округлые клетки, Грам-положительные.

Грибы чаще размножаются с помощью спор. Формирование спор идет 3-мя путями:

а) вегетативным путем- на любом участке мицелия

б) бесполым путем - в специальных органах размножения - спорофорах, которые образуют эндоспоры, и конидиофорах, которые образуют экзоспоры

в) половым путем - в специальных органах после слияния 2-х клеток.

Грибы являются возбудителями следующих заболеваний.

1. Дерматомикозы (поражение волос –трихофития или стригущий лишай, поражение кожи стоп, ногтей (онихомикозы), парша (фавус), микроспория -поражение волос, кожи, паховая эпидермофития). Дерматомикозы являются самыми распространенными инфекционными заболеваниями - по России 80% населения страдает теми или иными формами микозов.

2. Бластомикозы- кандидоз или молочница, а также разноцветный лишай, пьедра, террулез, северо- и южноамериканский бластомикоз, криптококкоз.

3. Плесневые микозы – возбудители являются сапрофитами, развитие заболевания происходит только при глубоких иммунодефицитах и сопровождается поражением легких, кожи, ротовой полости и т.д.

4. Глубокие микозы- поражают макрофагальную систему. От человека к человеку не передаются. Основной путь передачи - воздушно-капельный, при вдыхании спор. Заболевания, вызываемые этими возбудителями: кокцидиоидоз, гистоплазмоз и др. Для всех этих заболеваний характерно поражение не только легких, но и многих органов.

Вирусы

Лекция №4

на тему: «Физиология микробов».

  1. Обмен веществ микробной клетки.
  2. Химический состав.
  3. Питание микробов.
  4. Ферменты микробов.
  5. Дыхание микробов.
  6. Пигментообразование.
  7. Свечение и ароматообразование.
  8. Рост и размножение микробов.

1 . Физиология изучает жизненные функции микроорга­низмов: питание, дыхание, рост и размножение. В основе физиологических функций лежит непрерывный обмен веществ (метаболизм).

Сущность обмена веществ составляют два противопо­ложных и вместе с тем взаимосвязанных процесса: ас­симиляция (анаболизм) и диссимиляция (катабо­лизм).

В процессе ассимиляции происходит усвоение пита­тельных веществ и использование их для синтеза клеточ­ных структур. При процессах диссимиляции питательные вещества разлагаются и окисляются, при этом выделяется энергия, необходимая для жизни микробной клетки. Все процессы синтеза и распада питательных веществ совершаются с участием ферментов.

Особенностью микроорганизмов является интенсивный обмен веществ. За сутки при благоприятных условиях одна микробная клетка может переработать такое количе­ство питательных веществ, которое в 30-40 раз больше ее массы.

2. ХИМИЧЕСКИЙ СОСТАВ БАКТЕРИЙ

Для понимания процессов обмена веществ необходимо знать химический состав микроорганизмов. Микроорганиз­мы содержат те же химические вещества, что и клетки всех живых организмов, т.е. неорганические и органические вещества.

Неорганические вещества:

Важнейшими элементами являются органогены (уг­лерод, водород, кислород, азот), которые используются для построения сложных органических веществ: белков, углеводов и липидов.

В количественном отношении самым значительным компонентом клетки является вода, которая составляет 75-85%; на долю сухого вещества, которое состоит из органических (белки, нуклеиновые кислоты, углеводы, липиды) и минеральных соединений, приходится 15-25%. Значение воды в жизнедеятельности клетки велико. Все вещества поступают в клетку с водой, с ней же удаляются продукты обмена. Вода в микробной клетке находится в свободном состоянии как самостоятельное соединение, но большая часть ее связана с различными химическими компонентами клетки (белками, углеводами, липидами) и входит в состав клеточных структур.

Свободная вода принимает участие в химических реак­циях, протекающих в клетке. Содержание свободной воды в клетке может изменяться в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста. Так, у споровых форм бактерий значительно меньше воды, чем у вегетативных клеток. Наибольшее количество воды отмечается у капсульных бактерий.

Минеральные вещества - фосфор, натрий, калий, маг­ний, сера, железо, хлор и другие - в среднем составляют 2-14% сухого вещества.

Фосфор входит в состав нуклеиновых кислот, фос­фолипидов, многих ферментов, а также АТФ (аденозин-трифосфорной кислоты), которая является аккумулято­ром энергии в клетке.

Натрий участвует в поддержании осмотического давления в клетке.

Железо содержится в дыхательных ферментах.

Магний входит в состав рибонуклеата магния, который локализован на поверхности грамположительных бактерий.

Для развития микроорганизмов необходимы микро­ элементы , содержащиеся в клетке в очень малых количествах. К ним относят кобальт, марганец, медь, хром, цинк, молибден и многие другие. Микроэлементы участвуют в синтезе некоторых ферментов и активиру­ют их.

Органические вещества.

Белки (50-80% сухого вещества) определяют важней­шие биологические свойства микроорганизмов. Это про­стые белки - протеины и сложные - протеиды. Большое значение в жизнедеятельности клетки имеют нуклеопроте И ды - соединение белка с нуклеиновыми кислотами (ДНК и РНК). Кроме нуклеопротеидов, в микробной клетке содержатся в незначительных количествах липопротеиды, гликопротеиды, хромопротеиды.

Белки распределены в цитоплазме, нуклеоиде, они входят в состав структуры клеточной стенки. К белкам принадлежат ферменты, многие токсины (яды микроорга­низмов).

Нуклеиновые кислоты в микробной клетке выполняют те же функции, что и в клетках животного происхожде­ния. ДНК содержится в ядре (нуклеоиде) и обусловливает генетические свойства микроорганизмов. РНК принимает участие в биосинтезе клеточных белков, содержится в ядре и цитоплазме. Общее количество нуклеиновых кис­лот колеблется от 10 до 30% сухого вещества микробной клетки и зависит от ее вида и возраста.

Углеводы (12-18% сухого вещества) используются микробной клеткой в качестве источника энергии и угле­рода. Из них состоят многие структурные компоненты клетки (клеточная оболочка, капсула и другие). Углеводы входят также в состав тейхоевой кислоты, характерной для грамположительных бактерий.

Клетки микроорганизмов содержат простые (моно- и дисахариды) и высокомолекулярные (полисахариды) угле­воды.

Липиды (0,2-40% сухого вещества) являются необхо­димыми компонентами цитоплазматической мембраны и клеточной стенки, они участвуют в энергетическом обме­не. В некоторых микробных клетках липиды выполняют роль запасных веществ.

Липиды состоят в основном из нейтральных жиров, жирных кислот, фосфолипидов. Общее количество их зависит от возраста и вида микроорганизма. Например, у микобактерий туберкулеза количество липидов достигает 40%, что обусловливает устойчивость этих бактерий к воздействию факторов внешней среды.

3. ПИТАНИЕ БАКТЕРИЙ

Всем микроорганизмам для осуществления процессов питания, дыхания, размножения необходимы питательные вещества.

В качестве питательных веществ и источников энергии микроорганизмы используют…

ВВЕДЕНИЕ

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

ИСТОРИЯ РАЗВИТИЯ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

СИСТЕМАТИКА И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

Основы морфологии бактерий

БАКТЕРИИ

ВВЕДЕНИЕ

Наша планета населена огромным числом живых существ. Микроорганизмы наиболее древняя форма жизни на Земле, они появились 3-4 млрд. лет тому назад. Их можно обнаружить в почве, в пыли, в воде, в воздухе, на покровах животных и растений, внутри организмов и даже в горячих источниках, в космосе. Все живые организмы, населяющие нашу планету, относятся к макро- или микромиру.

К макромиру принадлежат организмы, видимые невооруженным глазом:

млекопитающие

пресмыкающиеся

птицы, рыбы и др.

К микромиру - представители живой природы, которых можно наблюдать с помощью микроскопа:

бактерии

простейшие

С точки зрения медицины все микробы можно разделить на 3 группы:

Ø Бактерии и грибы разрушают органическое вещество и участвуют в круговороте веществ в природе.

Ø Разлагая органические вещества, микроорганизмы являются причиной порчи продуктов.

Ø Некоторые микроорганизмы в результате своей жизнедеятельности разрушают человеческие строения, чем наносят огромный ущерб.

Ø Человек использует бактерии для очистки сточных вод.

Ø Человек получает с помощью микроорганизмов множество незаменимых продуктов (хлеб и сыр, вино и кумыс, льняная пряжа).

Ø Некоторые микроорганизмы являются причиной инфекционных заболеваний человека.

Ø В кишечнике человека и других животных живут многие бактерии-симбионты, которые приносят огромную пользу организму.

Ø Бактерии, живущие внутри организма, выделяют дополнительное тепло.

Ø Человек заставил микробы вырабатывать бактериальные удобрения, антибиотики, витамины, препараты для защиты растений. Такое техническое использование микроорганизмов называется биотехнологией.

Ø Методом генетической инженерии получают многие белковые биологические вещества, представляющие ценность для медицины.

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

Микробиология (греч.micros - малый, лат.bios - жизнь, logos- учение) - наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, или микробами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами, населяющими нашу планету, - животными, растениями и человеком. Медицинская микробиология и иммунология тесно связаны со всеми медицинскими дисциплинами (инфектологией, терапией, педиатрией, хирургией, фтизиатрией, гигиеной, фармакологией и др.). Значительно возросла роль микробиологии, вирусологии и иммунологии в решении многих проблем здравоохранения.

Цель медицинской микробиологии - глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней. Микробиология изучает многообразный мир микробов. В своем развитии она разделилась на несколько самостоятельных дисциплин. В первую очередь её можно разделить на общую и частную микробиологию.

В зависимости от решаемых задач делится:

микробиология бактерия клетка морфология

ИСТОРИЯ РАЗВИТИЯ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

Медицинская микробиология развилась в результате изучения инфекционных болезней.

История развития медицинской микробиологии как самостоятельной научной дисциплины насчитывает несколько этапов, обусловленных не столько временными периодами, сколько уровнем развития науки и техники.

Эвристический этап - период догадок и случайных находок. О существовании микробов догадывались уже древние мыслители и врачи. «Отец медицины» Гиппократ считал, что некоторые болезни человека вызываются какими-то невидимыми частицами, которые он называл миазами. О живой природе миазм начали догадываться значительно позднее. Римский поэт Веррон уже определенно считал миазмы живыми существами. Итальянский врач Джироламо Фракасторо, живший в середине века, писал, что заболевания передаются от человека человеку «живыми контагиями». Он создал учение о живом «контагии» - «мельчайших и недоступных нашим чувствам частиц», которые, проникая в организм человека, вызывают болезнь.

Величайшее открытие эвристического периода в медицинской микробиологии было сделано в конце 18 в. Э.Дженнером, который предложил вакцинацию против черной оспы путем нанесения на кожу человека содержимого оспин (пустул) от больных коров. Вирус коровьей оспы, содержащийся в пустулах, предохранял человека от заражения черной оспы. Еще не была доказана роль микробов в патологии, еще не была разработана теория защитных прививок, но микробиология начала реально помогать людям.

Морфологический этап микробиологии начался в 17 в., когда голландский натуралист А. Левенгук впервые увидел микробы, находящиеся в воде, травяных настоях, пищевых продуктах, ротовой полости, кишечнике и т.д. Для своих наблюдений он использовал двояковыпуклые линзы (лупы), приготовленные им самим. Они давали увеличение в 160 - 200 раз. Увиденные микробы А. Левенгук назвал ничтожными «зверушками» и подробно описал их в письмах в Британское королевское научное общество. все его описания форм микробов (шарообразные, палочковидные, извитые и др.) были настолько точны, что до настоящего времени сохранили свое значение.

Прообраз микроскопа как систему двух линз (объектива и окуляра) создал в 1590г. голландец З. Янсен. В последующие годы этот прибор многократно усовершенствовался. В результате в середине ХIХ века появился микроскоп, который по техническим возможностям не уступал современным световым микроскопам. Он мог увеличивать рассматриваемые предметы в 1000 раз. Создание микроскопов стимулировало развитие микробиологии. Начался период «охотников за микробами».

Первыми были открыты возбудители заболеваний волос и кожи человека: парши (Шенлейн), стригущего лишая (Груби), отрубевидного лишая (Эйхштедт) и молочницы (Лагенбек, Груби). Так зародилась наука о патогенных грибах - микология.

Развитие микробиологии ускорилось после того, как Р.Кох в конце ХIХ века разработал твердые питательные среды для получения чистых культур микроорганизмов, а также предложил использовать красители для изучения морфологии микробных клеток.

Различные микробиологические методики, разработанные Р. Кохом, позволили изучить возбудителей почти всех инфекционных заболеваний. Р. Кох выделил чистую культуру возбудителя сибирской язвы, туберкулёза (палочка Коха) и холеры (запятая Коха).

Среди всех «охотников за микробами» самым знаменитым был французский ученый Л. Пастер. Он доказал патологическую роль микробов родильной горячки, абсцессов и остеомиелита.

В последующие годы Т. Эшерих открыл кишечную палочку, Э. Ру - дифтерийную палочку, Д. Сальмон - возбудителей кишечных инфекций. Вслед за ними последовали новые открытия. К. Шига описал возбудителей дизентерии и коклюша, Г. Ганзен - проказы, С. Китазато - столбняка и чумы, а Ф. Шаудин и Э. Гофман - сифилиса.

Важнейшим событием в микробиологии было обнаружение ядовитых веществ (токсинов), выделяемых микробами. Это было сделано учеником Л. Пастера - Э. Ру, которые доказал, что основные симптомы и тяжесть течения дифтерии обусловлены токсином, выделяемым дифтерийной палочкой. Им был предложен способ лечения дифтерии при помощи специфических белков сыворотки крови (антител), нейтрализующих микробный токсин. Все перечисленные «охотники за микробами» заложили основы медицинской микробиологии.

Еще в конце ХIХ века обнаружено, что болезни человека могут быть вызваны не только бактериями, но и простейшими. Русские ученые Ф.А. Леш и П.Ф. Боровский открыли возбудителей амёбной дизентерии и кожного лейшманиоза. В дальнейшем доказана патогенная роль малярийного плазмодия, трихомонад, токсоплазм, балантий и других простейших. Зародилось новое направление в медицинской микробиологии - протозоология.

Русский ученый И.И. Мечников, работавший в институте Л. Пастера, первым изучил мир собственной микрофлоры организма и других микробов, окружающих человека. Он первым указал на большое значение микрофлоры для жизнедеятельности человека в норме и при патологии. Болезнетворные свойства микробов аутофлоры и окружающей среды проявляются только при ухудшении здоровья человека (условно-патогенные микробы). Таким образом, И.И. Мечников является основоположником нового раздела микробиологии - экологической микробиологии.

Морфологический период развития микробиологии не окончен, так как ученые делают все новые и новые открытия. Всего к настоящему времени было выделено и изучено около 4000 видов бактерий.

Развитие микробиологической техники, создание мелкопористых фильтров с определенным размером пор, использование метода культуры клеток позволили открыть вирусы. Период «охотников за микробами» сменился периодом «охотников за вирусами». Первым из них был русский ученый Д.И. Ивановский, выделивший в чистом виде (1892) вирус табачной мозаики. Вслед за ним Ф. Леффлер и П. Фрош открыли вирус ящура, поражающего животных, Т. Смит - вирус желтой лихорадки, вызывающий поражение печени у людей, Ф. Дэрелль - бактериофаг (вирус, поражающий бактерии), В. Смит с соавторами - вирус гриппа, Л.А. Зильбер - вирус энцефалита и онкогенные вирусы. Возникла новая наука - вирусология.

Развитию вирусологии способствовало изобретение в 30-е годы ХХ века электронного микроскопа, в котором в качестве осветителя используется источник электронов, фокусируемых электростатическими линзами. Электронный микроскоп в 10 000 раз увеличивает изображение объекта. Его создание позволило увидеть «портреты» вирусов.

Изучение патогенных вирусов продолжается. В 1982 году Л. Монтанье и Р. Гало открыли вирус иммунодефицита человека (ВИЧ/СПИД). В 2003 году китайские ученые описали вирус, вызывающий острый респираторный синдром (SARS) - атипичную пневмонию.

В 1963 году американский ученый К. Гайдушек доказал существование принципиально нового инфекционного начала, названного прионом. В отличие от всех других микробов прионы не содержат нуклеиновых кислот и являются белками с низкой молекулярной массой (инфекционные белковые молекулы). Они поражают клетки ЦНС, вызывают их разрыв и губкообразное перерождение, что закономерно заканчивается гибелью организма. Вызываемые прионами болезни стали называть «медленными инфекциями», так как между заражением и гибелью организма проходило от 5 до 20 лет. До настоящего времени не разработано средств лечения этих заболеваний.

Обнаружение возбудителей болезней сопровождалось изучением их биологических свойств. За морфологическим периодом развития микробиологии последовал ФИЗИОЛОГИЧЕСКИЙ. В этот период изучены процессы обмена веществ и дыхания у микробов, их ферментативная активность, размножение и рост на питательных средах. Физиологический период развития микробиологии связан с именем Л. Пастера. Он открыл ферментативную природу брожения, вызываемого жизнедеятельностью микробов, и заложил основы промышленной микробиологии, основал принципы стерилизации питательных сред. Изучение особенностей жизнедеятельности микробов привело к появлению противобактериальных препаратов, способных убивать микробы в организме или препятствовать их размножению (сульфаниламиды и антибиотики). Основоположниками химиотерапии можно считать П. Эрлиха, синтезировавшего сульфаниламид - стрептоцид. Первый антибиотик пенициллин выделен в химически чистом виде английским ученым А. Флемингом и отечественным микробиологом З. В. Ермольевой. С каждым годом расширяется список противобактериальных препаратов. В настоящее время их количество исчисляется сотнями. Были получены препараты, обладающие противовирусной активностью (интерферон).

С именами Л. Пастера, И.И. Мечникова и П. Эрлиха связан иммунологический этап развития микробиологии. В медицинскую практику вошли профилактические вакцины, приготовленные из микробов против многих инфекционных заболеваний, а также лечебные сыворотки, содержащие специфические антитела против микробных токсинов.

В ХХ веке начался этап развития молекулярно-генетической микробиологии и иммунологии. В это время изучали основы молекулярного строения микробов, антител, генетического аппарата клеток и, наконец, генетического кода человека, обеспечивающего, в частности, иммунный ответ организма.

СИСТЕМАТИКА И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

М/о - это организмы, невидимые невооруженным глазом из-за их незначительных размеров.

Базовая категория (таксон) биологической классификации, отражающая определенную стадию эволюции отдельной популяции организмов - вид. Вид - эволюционно сложившаяся совокупность особей, имеющая единый генотип, который в стандартных условиях проявляется сходными морфологическими, биохимическими и другими признаками. Принципы таксономии и номенклатуры микроорганизмов

Живые организмы (микроорганизмы) М/о относятся к 3 царствам:

Прокариоты PROCARIOTAE:

Эубактерии

Грациликуты (тонкая клеточная стенка)

Фирмикуты (толстая клеточная стенка)

Спирохеты, риккетсии, хламидии, микоплазмы, актиномицеты. Архебактерии

Мендосикуты

Эукариоты EUCARIOTAE: Животные Растения Грибы ПростейшиеНеклеточные формы жизни VIRA: Вирусы Прионы Плазмиды

Для микроорганизмов приняты следующие категории (таксоны) таксономической иерархии (по восходящей): Вид - Род - Семейство - Порядок - Класс - Отдел - Царство.

Названия видов биноминальны (бинарны), то есть обозначаются двумя словами. Первое слово обозначает Род и пишется с заглавной буквы, второе слово обозначает Вид и пишется со строчной буквы.

Схема формирования биноминального названия микроорганизмов.



Примеры конструирования биноминального названия бактерий.

Вид бактерий

Условное обозначение принадлежности к:


Bacillus anthracis

Bacillus (палочка)

anthracis (уголь - «антрацит»)

Clostridium tetanus

Clostridium (веретено)

tetanus (судороги)

Staphilococcus aureus

Staphilococcus (гроздья винограда, шар)

aureus (золотистый цвет колонии)

Shigella dysenteriae

dysenteriae (расстройство кишечника)

coli (кишка)

Salmonella typhi

typhus («туман» - бред)


ОСНОВЫ МОРФОЛОГИИ БАКТЕРИЙ

Специализированные термины:

Штамм - культура микроорганизмов, выделенная из определенного конкретного источника (организма или объекта окружающей среды).

Форма бактерий. Размер бактерий.

Строение бактериальной клетки.

Характеристика некоторых групп бактерий.

ФОРМА БАКТЕРИЙ. РАЗМЕР БАКТЕРИЙ

Отдельным видам бактерий с достаточным постоянством присущи определенные формы и размер.

Выделяют три основные формы бактерий - шаровидные, палочковидные и извитые.

Шаровидные бактерии, или кокки

Форма шаровидная или овальная.

Микрококки - отдельно расположенные клетки.

Диплококки - располагаются парами.

Стрептококки - клетки округлой или вытянутой формы, составляющие цепочку.

Сарцины - располагаются в виде «пакетов» из 8 и более кокков. Стафилококки - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

Рис. 1. Шаровидные бактерии (энтерококки). Электронная микрофотография (ЭМ).

Палочковидные бактерии. Форма палочковидная, концы клетки могут быть заостренными, закругленными, обрубленными, расщепленными, расширенными. Палочки могут быть правильной и неправильной формы, в том числе ветвящиеся, например у актиномицетов.

По характеру расположения клеток в мазках выделяют:

Монобактерии - расположены отдельными клетками.

Диплобактерии - расположены по две клетки.

Стрептобактериии - после деления образуют цепочки клеток.

Палочковидные бактерии могут образовывать споры: бациллы и клостридии.

Рис. 2. Палочковидные бактерии (кишечная палочка). ЭМ.

Извитые бактерии

Форма - изогнутое тело в один или несколько оборотов.

Вибрионы - изогнутость тела не превышает одного оборота.

Спирохеты - изгибы тела в один или несколько оборотов.

Рис. 3. Извитые бактерии (холерный вибрион). ЭМ.

Размер бактерий

Микроорганизмы измеряются в микрометрах и нанометрах.

Средние размеры бактерий - 2 - 3 х 0,3 - 0,8 мкм.

Форма и размер - важный диагностический признак.

Способность бактерий изменять свою форму и величину называется полиморфизм.

БАКТЕРИИ

СТРОЕНИЕ БАКТЕРИАЛЬНОЙ КЛЕТКИ

Строение бактерий.

Тело бактерии состоит из цитоплазмы (с различными включениями) и цитоплазматической мембраны, окруженных клеточной стенкой.

Цитоплазма занимает основной объем бактериальной клетки. Важнейшим компонентом цитоплазмы является нуктеотид, который считается эквивалентом ядра и расположен в центральной зоне бактерии. Кроме нуклеотида, в цитоплазме находятся плазмиды, являющиеся факторами наследственности (их может быть от 1 до 200).

Цитоплазматическая мембрана ограничивает цитоплазму (участвует в транспорте питательных веществ).

Между клеточной стенкой и цитоплазматической мембраной находится пространство - периплазма, содержащая ферменты.

Клеточная стенка - прочная структура, придающая бактерии определенную форму. По типу строения клеточной стенки бактерии подразделяют на грамположительные с толстой стенкой и грамотрицательные с тонкой клеточной стенкой.

Основным компонентом клеточной стенки у грамположительных бактерий является пептидоглюкан, способный удерживать краску генцианвиолет в комплексе с йодом (сине-фиолетовый цвет) при обработке препарата спиртом.

Клетки бактерий в процессе жизнедеятельности образуют защитные органеллы - капсулы и споры.

Капсула - внешний уплотненный слизистый слой, примыкающий к клеточной стенке. Это защитный орган, который появляется у некоторых бактерий при попадании их в организм человека или животных. Капсула предохраняет м/о от защитных факторов организма (препятствуют захвату бактерий фагоцитами).

Спора - форма грамположительных бактерий, образующаяся при неблагоприятных условиях существования клетки (высушивание, дефицит питательных веществ, изменение температуры и др). Образование спор способствует сохранению вида и не имеет отношения к размножению бактерий.

Спорообразующие аэробные бактерии называются бациллами, а анаэробные - клостридиями.

Споры отличаются по форме, размерам и расположению в клетке. Они могут располагаться:


Жгутики обеспечивают подвижность микроба, их имеют только палочковидные бактерии, они берут начало от цитоплазматической мембраны.

По числу жгутиков различают:

Монотрих (один у холерного вибриона);

Перитрих (до сотен у кишечной палочки)

Амфитрихи - по одному или нескольку жгутиков на противоположных концах микробной клетки (спириллы)

Лофотрихи - имеют пучок жгутиков на одном из концов клетки.

Ворсинки, или пили, - нитевидные образования, более короткие, чем жгутики. Они отходят от поверхности бактерии, состоят из белка пилина и ответственны за прилипание микроба к поражаемой клетке. Среди пилей выделяют половые пили, присущие "мужским" клеткам-донорам, содержащим трансмиссивные плазмиды (F, R, Col). Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и так называемым нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

Рис. 4. Строение бактериальной клетки (схема). Сapsule - капсула; Сell wall - клеточная стенка; Cytoplasmic membrane - цитоплазматическая мембрана; Mesosome - мезосома; Flagellum - жгутик; Pili - пили; Cytoplasma - цитоплазма; Nucleoid - нуклеоид; Ribosomes - рибосомы; Granular inclusion - включения.

Рис. 5. Определите форменные элементы бактериальной клетки.

Грамположительные бактерии имеют толстую (многослойную) клеточную стенку.

Окрашиваются по Граму в фиолетовый цвет.

Грамотрицательные бактерии имеют тонкую клеточную стенку, прикрытую снаружи тройным липидсодержащим слоем (внешняя мембрана).Окрашиваются по Граму в красный цвет.

Рис. 6. Строение клеточной стенки грамположительных (А) и грамотрицательных (Б) бактерий (схема).

У грамположительных бактерий (А) основной слой - пептидогликан - многослойный и пронизан тейхоевыми кислотами (толстая клеточная стенка); у грамотрицательных бактерий (Б) тонкий пептидогликан и над ним расположена внешняя мембрана, содержащая липиды (тонкая клеточная стенка).

Тинкториальные свойства - восприимчивость микроорганизмов к различным красителям.формы - бактерии, полностью лишенные клеточной стенки и способные размножаться.

Споры и спорообразование

Споры бактерий - своеобразная форма покоящихся бактерий, форма сохранения наследственной информации в неблагоприятных условиях внешней среды и не является способом размножения, как у грибов.

Процесс спорообразования: спорогенная зона - проспора - спора.

В благоприятных условиях споры прорастают за 4-5 часов. Образуют споры в течение 18-20 часов.

Рис. 7. Спора внутри бактериальной клетки (ЭМ).

Рис. 8. Споры сибиреязвенной палочки (светооптическая микроскопия, СМ).

А также критерии, согласно которым определяется таксономическое положение, периодически меняются. В настоящее время действует 8е издание «Руководства Берги по определению бактерий», в котором все прокариоты распределены на 19 групп. Такая классификация служит в основном практическим целям для распознавания бактерий, т. е. идентификации видовой принадлежности, в основе которой лежит определение ряда морфологических, тинкториальных и биологических свойств выделяемых культур. В соответствии с Кодексом номенклатуры бактерий, действующим с 1 января 1980 г., имеются следующие классификационные категории царства прокариотов: отдел, класс, порядок, семейство, род, вид. Основной таксономической единицей является вид, т. е. совокупность особей одного генотипа, обладающих ярко выраженным фенотипическим сходством. Для обозначения биологического вида бактерий принята биноминальная номенклатура: первым словом определяется род микроба и оно пишется с прописной буквы, второе слово характеризует вид и пишется со строчной буквы. Например, Staphylococcus aureus, Escherichia coli. Родовые названия обозначают сокращенно: St. aureus, E. coli. Классификация микроорганизмов (распределение на классы, семейства, роды) и даны примеры видов прокариотов, главным образом патогенных для человека. Обозначены и некоторые ключевые свойства: морфологические (кокки, палочки и пр.), тинкториальные (отношение к окраске по Граму), биологические (тип дыхания - анаэробный или аэробный, способность к спорообразованию).

Микробы, или микроорганизмы (бактерии, грибы, простейшие, вирусы), систематизиро­ваны по их сходству, различиям и взаимо­отношениям между собой. Этим занимается специальная наука - систематика микроор­ганизмов. Систематика включает три части: классификацию, таксономию и идентифика­цию. В основу таксономии микроорганизмов поло­жены их морфологические, физиологические, биохимические и молекулярно-биологические свойства. Различают следующие таксономи­ческие категории: царство, подцарство, отдел, класс, порядок, семейство, род, вид, подвид и др. В рамках той или иной таксономичес­кой категории выделяют таксоны - группы организмов, объединенные по определенным однородным свойствам.

Микроорганизмы представлены доклеточными формами (вирусы - царство Vira) и клеточными формами (бактерии, архебактерии, грибы и простейшие). Различают 3 доме­на (или «империи»): «Bacteria», «Archaea» и «Eukarya»:

1)домен «Bacteria» - прокариоты, пред­ставленные настоящими бактериями (эубактериями);

2)домен «Archaea» - прокариоты, пред­ставленные архебактериями;

3)домен «Eukarya» - эукариоты, клетки которых имеют ядро с ядерной оболочкой и ядрышком, а цитоплазма состоит из высоко­организованных органелл - митохондрий, аппарата Гольджи и др. Домен «Eukarya» вклю­чает: царство Fungi (грибы); царство животных Animalia (включает прстейшие – подцарство Protozoa); царство растений Plante. Домены включают царства, типы, классы, порядки, семейства, роды, виды.

Вид - это совокупность особей, объединенных по близким свойствам, но от­личающихся от других представителей рода. Чистая культура . Совокупность однородных микроорганиз­мов, выделенных на питательной среде, характеризующихся сходными морфологичес­кими, тинкториальными (отношение к кра­сителям), культуральными, биохимическими и антигенными свойствами. Штамм . Чистая культура микроорганизмов, выделен­ных из определенного источника и отличаю­щихся от других представителей вида, называ­ется штаммом..

Клон - представляет собой совокупность потомков, выращенных из единственной микробной клетки.

2.Механизмы передачи генетического материала у бактерий . Конъюгация бактерий состоит в переходе генети­ческого материала (ДНК) из клетки-донора («мужской») в клет­ку-реципиент («женскую») при контакте клеток между собой.Мужская клетка содержит F-фактор, или половой фактор, который контролирует синтез так называемых половых пилей, или F-пилей. Клетки, не содержа­щие F-фактора, являются женскими. F-фактор располагается в цитоплазме в виде кольцевой двунитчатой молекулы ДНК, т. е. является плазмидой. При конъюгации F-пили соединяют «мужскую» и «женскую» клетки, обеспечивая переход ДНК через конъюгационный мостик или F-пили.. Перенос всей хромосомы может длиться до 100 мин.Переносимая ДНК взаимодействует с ДНК реципиента - происходит гомологичная рекомбинация. Прерывая процесс конъ­югации бактерий, можно определять последовательность распо­ложения генов в хромосоме. Иногда F-фактор может при выхо­де из хромосомы захватывать небольшую ее часть, образуя так называемый замещенный фактор - F".При конъюгации происходит только частичный перенос ге­нетического материала.Трансдукция - передача ДНК от бактерии-донора к бактерии-реципиенту при участии бактериофага. Различают неспецифическую (общую) трансдукцию, при которой возможен перенос любого фрагмен­та ДНК донора, и специфическую - перенос определен­ного фрагмента ДНК донора только в определенные участки ДНК реципиента. Неспецифическая трансдукция обусловлена включе­нием ДНК донора в головку фага дополнительно к геному фага или вместо генома фага (дефектные фаги). Специфическая транс­дукция обусловлена замещением некоторых генов фага генами хромосомы клетки-донора. Фаговая ДНК, несущая фрагменты хромосомы клетки-донора, включается в строго определенные участки хромосомы клетки-реципиента. Таким образом, привно­сятся новые гены и ДНК фага в виде профага репродуцируется вместе с хромосомой, т.е. этот процесс сопровождается лизоге-нией. Если фрагмент ДНК, переносимый фагом, не вступает в рекомбинацию с хромосомой реципиента и не реплицируется, но с него считывается информация о синтезе соответствующего про­дукта, такая трансдукция называется абортивной.

Трансформация заключа­ется в том, что ДНК, выделенная из бактерий в свободной ра­створимой форме, передается бактерии-реципиенту. При транс­формации рекомбинация происходит, если ДНК бактерий род­ственны друг другу. В этом случае возможен обмен гомологич­ных участков собственной и проникшей извне ДНК. Впервые явление трансформации описал Ф. Гриффите (1928). Он вводил мышам живой невирулентный бескапсульный R-штамм пневмо­кокка и одновременно убитый вирулентный капсульный S-штамм пневмококка. Из крови погибших мышей был выделен вирулен­тный пневмококк, имеющий капсулу убитого S-штамма пнев­мококка. Таким образом, убитый S-штамм пневмококка передал наследственную способность капсулообразования R-штамму пнев­мококка. О. Эвери, К. Мак-Леод и М. Мак-Карти (1944) дока­зали, что трансформирующим агентом в этом случае является ДНК. Путем трансформации могут быть перенесены различные признаки: капсулообразование, устойчивость к антибиотикам, синтез ферментов.

Изучение бактериальной трансформации позволило установить роль ДНК как материального субстрата наследственности. При изучении генетической трансформации у бактерий были разра­ботаны методы экстракции и очистки ДНК, биохимические и биофизические методы ее анализа.

3.Возбудители брюшного тифа и паратифов. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение. Брюшной тиф и паратифы А и В - - инфекционные болезни, вызываемые соответственно Salmonella typhi, Salmonella paratyph(Salmonella schottmuelleri, сопровождающиеся сходными патогенетическими и клиническими проявлениями, характеризующиеся поражением лимфатической системы кишечника, выраженной интоксикацией. Название рода Salmonella связано с именем Д. Сальмона.Таксономия . Возбудители брюшного тифа и паратифов А и В относятся к отделу Gracilicutes, семейству Enterobacteriaceae, роду Salmonella, включающему более 2000 видов.Морфология и тинкториальные свойства. Сальмонеллы – мелкие, длиной 2.3 мкм, шириной 0,5-0,7 мкм, грамотрицатель-ные палочки с закругленными концами (см. рис.ЮЛ). В мазках располагаются беспорядочно. Не образуют спор, имеют микрокапсулу, перитрихи.Культивирование . Сальмонеллы – факультативные анаэробы. Они неприхотливы и растут без всяких особенностей на простых питательных средах при температуре 37ºС и рН среды 7,2-7,4. Эдективной средой является, например, желчный бульон. При диагностике брюшного тифа, как и других кишечных инфекций, используют дифференциально-диагностические среды: Эндо, Левина, висмут-сульфитный агар и др.Ферментативная активность . Биохимическая активность сальмонелл достаточно высока, но они обладают меньшим набором ферментов, чем Е. coli, в частности не сбраживают лактозу. S. typhi менее активна, чем возбудители паратифов: она ферментирует ряд углеводов без образования газа.Антигенные свойства . Сальмонеллы имеют О- и Н-антигены, состоящие из ряда фракций, или рецепторов. Каждый вид имеет определенный набор фракций. Ф. Кауфман и П.Уайт предложили схему классификации сальмонелл по антигенной структуре, в основу которой положено строение О-антигена. Все виды сальмонелл, имеющие общий, так называемый групповой, рецептор О-антигена, объединены в одну группу. Таких групп насчитывается в настоящее время 65. В схеме также указано строение Н-антигена. Некоторые виды сальмонелл, в том числе S. typhi, имеют поверхностный Vi-антиген – антиген вирулентности, с которым связана устойчивость бактерий к фагоцитозу.

Факторы патогенности . Сальмонеллы образуют эндотоксин, оказывающий энтеротропное, нейротропное и пирогенное действие. Белки наружной мембраны обусловливают адгезивные свойства, устойчивость к фагоцитозу связана с микрокапсулой. Резистентность. Сальмонеллы довольно устойчивы к низкой температуре – в холодной чистой воде могут сохраняться до полутора лет; очень чувствительны к дезинфицирующим средствам, высокой температуре, УФ-лучам. В пищевых продуктах (мясе, молоке и др.) сальмонеллы могут не только долго сохраняться, но и размножаться. Эпидемиология. Источником брюшного тифа и паратифов являются больные люди и носители. Механизм передачи инфекции – фекально-оральный. Преобладает водный путь передачи, реже встречаются пищевой и контактно-бытовой пути. Брюшной тиф и паратифы – заболевания, которые регистрируются в разных странах мира. Чаще болеют люди в возрасте от 15 до 30 лет. Наиболее высокая заболеваемость отмечается летом и осенью. Патогенез . Возбудители попадают в организм через рот, достигают тонкой кишки, в лимфатических образованиях которой размножаются, а затем попадают в кровь. Током крови они разносятся по всему организму, внедряясь в паренхиматозные органы (селезенку, печень, почки, костный мозг). При гибели бактерий освобождается эндотоксин, вызывающий интоксикацию. Из желчного пузыря, где сальмонеллы могут длительно, даже в течение всей жизни сохраняться, они вновь попадают в те же лимфатические образования тонкой кишки. В результате повторного поступления сальмонелл может развиться своеобразная аллергическая реакция, проявляющаяся в виде воспаления, а затем некроза лимфатических образований. Выводятся сальмонеллы из организма с мочой и испражнениями. Клиническая картина. Клинически брюшной тиф и паратифы не отличимы. Инкубационный период продолжается 12.14 дней. Заболевание обычно начинается остро с повышения температуры тела, проявления слабости, утомляемости, нарушаются сон, аппетит. Для брюшного тифа характерны помрачение сознания (от греч. typhus – дым, туман), бред, галлюцинации, наличие сыпи. Очень тяжелыми осложнениями заболевания являются перитонит, кишечное кровотечение в результате некроза лимфатических образований тонкой кишки.

Иммунитет. После перенесенного заболевания вырабатывается прочный и продолжительный иммунитет.

Микробиологическая диагностика. В качестве материала для исследования используют кровь, мочу, испражнения. Основным методом диагностики является бактериологический, завершающийся внутривидовой идентификацией выделенной чистой культуры возбудителя – определением фаговара. Применяют также серологический метод – реакцию агглютинации Видаля, РНГА. Лечение. Назначают антибиотики. Применяют также иммуно-антибиотикотерапию. Профилактика. Для профилактики проводят санитарно-гигиенические мероприятия, а также используют вакцинацию в районах с неблагополучной эпидемической обстановкой. Применяют брюшнотифозную химическую и брюшнотифозную спиртовую вакцины, последняя обогащена Vi-антигеном. Для экстренной профилактики в очагах инфекции используют брюшнотифозный бактериофаг (в виде таблеток с кислотоустойчивой оболочкой и в жидком виде).

"
  • 8.Энергетический и конструктивный метаболизм бактерий.
  • 9. Условия культивирования микробов.
  • 10. Микробные ферменты.
  • 11. Понятие о чистой культуре.
  • 12. Выделение и культивирование строгих анаэробов и микроаэрофильных бактерий.
  • 13. Понятие об асептике, антисептике, стерилизации и дезинфекции.
  • 14. Действие физических факторов на микроорганизм. Стерилизация.
  • 15. Бактериофаг. Получение, титрование и практическое применение.
  • 16. Фазы взаимодействия фага с клеткой. Умеренные фаги. Лизогения.
  • 17. Генетический аппарат у бактерий. Генная идентификация пцр.
  • 18. Генетические рекомбинации.
  • 19. Нехромосомные генетические факторы.
  • 20. Учение о микробном антагонизме. Антибиотики.
  • 21. Определение чувствительности микробов к антибиотикам.
  • 1. Метод диффузии в агар (метод дисков)
  • 2.Методы разведения
  • 22. Механизмы возникновения и распространения лекарственной устойчивости.
  • 29.Микроскопические грибы.
  • 30.Нормальная микрофлора тела.
  • 31.Микрофлора кишечника.
  • 32.Дисбактериоз кишечника у детей.
  • 33.Морфология и ультраструктура вирусов.
  • 34.Молекулярно-Генетическое разнообразие вирусов.
  • 35. Методы культивирования вирусов.
  • 36.Основные стадии репродукции вируса в клетке.
  • 37. Типы взаимодействия вируса и клетки.
  • 38. Вирусный онкогенез.
  • 40. Природа прионов и прионовых болезней.
  • 1.Понятие об инфекции и инфекционном заболевании.
  • 2.Особенности внутриутробного инфекционного процесса.
  • 3.Экзотоксины и Эндотоксины бактерий
  • 4. Патогенность и вирулентность.
  • 5.Формы инфекций.
  • 6. Иммунная система.
  • 7.Медиаторы иммунной системы.
  • 8.Межклеточная кооперация в иммуногенезе.
  • 9.Клонально-Селекционная теория иммунитета.
  • 10. Иммунологическая память.
  • 11.Иммунологическая толерантность.
  • 12.Антигены.
  • 13.Антигенная структура микробов.
  • 14.Гуморальные и клеточные факторы неспецифической защиты.
  • 15. Система комплемента.
  • 16.Фагоцитарная реакция.
  • 17. Гуморальный иммунный ответ.
  • 18. Роль секреторных иммуноглобулинов в местном иммунитете у детей и взрослых. Иммунные факторы женского грудного молока.
  • 19. Клеточный иммунный ответ.
  • 20.Реакция антиген-антитело.
  • 21. Монорецепторные агглютинирующие сыворотки.
  • 22.Реакция агглютинации и ее варианты.
  • 23. Реакция гемагглютинации.
  • 24. Реакция преципитации.
  • 25. Иммунолюминесцентный метод и его применение в диагностике инфекционных заболеваний.
  • 26. Р-ции связывания комплимента. Р-ции иммунного гемолиза.
  • 27. Твердофазный иммуноферментный анализ: принцип, применение для лабораторной диагностики инфекционных заболеваний (ифа)
  • 28. Метод оценки иммунного статуса организма
  • 29. Особенности иммунитета и неспецифической резистентности.
  • 30. Система интерферона.
  • 31. Аутоантигены. Аутоантитела. Природа аутоиммунной реакции.
  • 32. Врожденные (первичные) и приобретенные (вторичные) иммунодефициты: этиология, проявления, диагностика
  • 33. Гиперчувствительность замедленного типа (т-зависимая аллергия) Кожные аллергические реакции в диагностике инфекционных заболеваний
  • 34. Гиперчувствительность немедленного типа (в-зависимая аллергия)
  • 35. Живые вирусные вакцины. Применение в педиатрической практике.
  • 36. Серотерапия, серопрофилактика. Предупреждение сывороточной болезни и анафилактического шока у детей.
  • 37. Вакцинопрофилактика и вакцинотерапия.
  • 38. Живая вакцина: получение, требование к вакцинным штаммам, достоинства и недостатки.
  • 39. Убитые вакцины. Принцип получения. Химические вакцины.
  • 40. Перечень вакцин для плановых профилактических прививок у детей. Оценка поствакцинального иммунитета
  • 2.Принципы современной классификации микробов.

    Микробы, или микроорганизмы (бактерии, грибы, простейшие, вирусы), систематизиро­ваны по их сходству, различиям и взаимо­отношениям между собой. Этим занимается специальная наука - систематика микроор­ганизмов, которая включает три части: классификацию, таксономию и идентифика­цию. В основу таксономии микроорганизмов поло­жены их морфологические, физиологические, биохимические и молекулярно-биологические свойства. Различают следующие таксономи­ческие категории: царство, подцарство, отдел, класс, порядок, семейство, род, вид, подвид и др. В рамках той или иной таксономичес­кой категории выделяют таксоны - группы организмов, объединенные по определенным однородным свойствам.

    Микроорганизмы представлены доклеточными формами (вирусы - царство Vira) и клеточными формами (бактерии, архебактерии, грибы и простейшие). Различают 3 доме­на :

    □ домен «Bacteria» - прокариоты, пред­ставленные настоящими бактериями (эубактериями);

    □ домен «Archaea» - прокариоты, пред­ставленные архебактериями;

    □ домен «Eukarya» - эукариоты, клетки которых имеют ядро с ядерной оболочкой и ядрышком, а цитоплазма состоит из высоко­организованных органелл - митохондрий, аппарата Гольджи и др. Домен «Eukarya» вклю­чает: царство Fungi (грибы); царство животных Animalia (включает прстейшие – подцарство Protozoa); царство растений Plante. Домены включают царства, типы, классы, порядки, семейства, роды, виды.

    Вид . Одной из ос­новных таксономических категорий является вид (species). Вид - это совокупность особей, объединенных по близким свойствам, но от­личающихся от других представителей рода.

    Чистая культура . Совокупность однородных микроорганиз­мов, выделенных на питательной среде, характеризующихся сходными морфологичес­кими, тинкториальными (отношение к кра­сителям), культуральными, биохимическими и антигенными свойствами, называется чис­той культурой.

    Штамм . Чистая культура микроорганизмов, выделен­ных из определенного источника и отличаю­щихся от других представителей вида, называ­ется штаммом. Штамм - более узкое понятие, чем вид или подвид.

    Клон . Близким к понятию штам­ма является понятие клона. Клон представляет собой совокупность потомков, выращенных из единственной микробной клетки.

    Для обозначения некоторых совокупностей микроорганизмов, отличающихся по тем или иным свойствам, употребляется суффикс var (разновидность) вместо ранее применявшегося type.

    Биовариант –

    Серовариант –

    Фаговариант

    3.Основные методы исследования морфологии бактерий .

    Морфологические свойства бакте­рий . Бактерии- микроорганизмы, не имеющие оформлен­ного ядра (прокариоты).

    Бактерии имеют разнообразную форму и довольно сложную структуру, определяющую многообразие их функциональной дея­тельности. Для бактерий характерны четыре основные формы: сферическая (шаровидная), цилиндрическая (палочковидная), извитая и нитевидная.

    Бактерии шаровидной формы - кокки - в зависимости от плоскости деления и расположения относительно друг друга от­дельных особей подразделяются на микрококки (отдельно лежащие кокки), диплококки (парные кокки), стрептококки (цепочки кокков), стафилококки (имеющие вид виноградных гроздьев), тетракокки (образования из четырех кокков) и сарцины (паке­ты из 8 или 16 кокков).

    Палочковидные бактерии располагаются в виде оди­ночных клеток, дипло- или стрептобактерий.

    Извитые формы бактерий - вибрионы и спириллы, а так­же спирохеты. Вибрионы имеют вид слегка изогнутых палочек, спириллы - извитую форму с несколькими спиральными завит­ками.

    Размеры бактерий колеблются от 0,1 до 10 мкм. В состав бак­териальной клетки входят капсула, клеточная стенка, цитоплаз-матическая мембрана и цитоплазма, в которой содержатся нуклеоид, рибосомы и включения. Некоторые бактерии снабжены жгутиками и ворсинками. Ряд бактерий образуют споры, которые располагаются терминально, субтер­минально или центрально; превышая поперечный раз­мер клетки, споры придают ей веретенообразную форму.

    Методы окраски . Окраску мазка производят просты­ми или сложными методами. Простые за­ключаются в окраске препарата одним красителем; сложные методы (по Граму, Цилю - Нильсену и др.) включают последо­вательное использование нескольких красителей и имеют диффе­ренциально-диагностическое значение. Отношение микроорганиз­мов к красителям расценивают как тинкториальные свойства. Существуют специальные методы окраски, которые используют для выявления жгутиков, клеточной стенки, нуклеоида и разных цитоплазматических включений.

    микроскопический метод: световая, фазово-контрастная, флуоресцентная, электронная;

    культуральный метод (бактериологический, вирусологический);

    биологический метод (заражение лабораторных животных);

    молекулярно-генетический метод (ПЦР - полимеразная цепная реакция)

    серологический метод - выявления антигенов микроорганизмов или антител к ним;

    Сложные методы окраски применяют для изуче­ния структуры клетки и дифференциации микроорганиз­мов. Окрашенные мазки микроскопируют в иммерсион­ной системе. Последовательно нанести на препа­рат определенные красители, различающиеся по химическому составу и цвету, протравы, спирты, кислоту и др.

    Клеточная стенка окрашивается по методу Пешкова – приготовленный и высушенный препарат помещают в жидкость Карнуа (смесь этилового спирта, хлороформа и ледяной уксусной кислоты, 6:3:1) на 15 минут, промывают водой, протравливают в 10% растворе танина 6-8 минут, промывают, окрашивают водным фуксином 30 сек., высушивают.

    Капсула по Бурри-Гинсу

    "
    2024 kidspartyband.ru. Литература в школе.